
On the complexity of searching for an evader with a faster pursuer

Florian Shkurti1 and Gregory Dudek1

Abstract— In this paper we examine pursuit-evasion games
in which the pursuer has higher speed than the evader.
This scenario is motivated by visibility-based pursuit-evasion
problems, particularly by the question of what happens when
the pursuer loses visual track of the moving evader. In these
cases the pursuer has two options for recovering visual contact
with the evader: to perform search over the possible locations
where the evader might be moving, or to clear the environment,
in other words to progressively search it without allowing the
evader to move into locations that have already been cleared.
It has been shown that in sufficiently complex environments
a single pursuer having the same speed as the evader cannot
clear the environment. In this work we prove that computing
the minimum speed which enables a faster pursuer to clear a
graph environment is NP-hard. In light of this result we provide
an experimental comparison of randomized and deterministic
search strategies on planar graphs, which has practical signif-
icance in search and rescue settings.

I. INTRODUCTION

The central theme shared by the many variants in the
family of pursuit-evasion games is that one or more pursuers
want to search for, and in some cases to capture, a moving
evader. This search paradigm is thus different from traditional
search and path planning strategies, which assume that the
target of interest is fixed and its position known.

Pursuit-evasion games are of great interest in robotics
because of their numerous applications in settings where
search in the physical world is involved. Many applications
can be modeled as pursuit evasion, or have worst case
performance bounds that are provided by results from pursuit
evasion. While in many cases one agent may not actually be
actively evading the other, performance guarantees regarding
guaranteed capture from pursuit evasion provide assurance
on when the agents will be able to meet. For example, search
and rescue missions in mountains, where networks of hiking
trails can prove to be very difficult to navigate, even for
experienced mountaineers, often involve a search party that
is looking for missing persons. A typical question studied in
pursuit-evasion games is: given a map of the environment,
what is the minimum number of searchers and a search plan
that will guarantee that the missing persons are going to
be found? This question is computationally intractable for
general environments, as shown in [1], [2], [3].

Another example of pursuit-evasion games involves
evaders that are diffusive. For instance, an oil spill or fire
spreading around in the environment from a source can be
modeled as an evader that must be completely cleared by the

1F. Shkurti and G. Dudek are with the Center for Intelligent
Machines (CIM), School of Computer Science, McGill University,
Montréal, QC, Canada (florian@cim.mcgill.ca,
dudek@cim.mcgill.ca)

pursuers. In such cases, clearing strategies that do not allow
recontamination of previously cleared regions are sought by
the team of robot pursuers. In fact, such strategies are not
only useful for restricting diffusive evaders, but also in cases
where the pursuers do not know how many evaders are to
be found in the environment. This is particularly relevant for
intrusion detection performed by robot agents.

In this paper we analyze pursuit-evasion games in which
the pursuer is faster than the evader, whom we assume to be
non-adversarial but also non-cooperative. In other words, we
assume that the evader’s motion is independent of the pur-
suer’s actions. We are motivated by scenarios of visual target
following and in particular by the question of what happens
when the pursuer loses track of the target, due to obstacles
in the environment. The majority of existing approaches to
visibility-based pursuit-evasion problems focus on pursuer
strategies that consistently maintain visual contact with the
evader, assuming that they both share the same upper bound
on their speed [4], [5]. Depending on the initial positions of
the two agents and the structure of the environment consistent
visual contact might not always be possible. Yet, the question
of whether the pursuer can recover visual contact with the
evader if provided with sufficient speed has been largely
ignored in the literature, one of the few exceptions being [6].

Clearing and search strategies are both relevant in address-
ing this question, so in this paper we consider both. We
assume throughout this work that the pursuer and the evader
have complete knowledge of the map of the environment,
of their own location on this map, but not of each other’s
location. We also make the physically sensible assumptions
that the two agents’ motion happens concurrently, in other
words that they do not take turns moving, and that they
have no means of communicating with each other. The
contributions of this paper are the following:

• The problem of finding the minimum pursuer speed
advantage with which a single pursuer can clear an
environment modeled as a graph is proven to be NP-
hard. We show that this is the case even for star-shaped
tree environments.

• Related problems, such as finding a clearing schedule,
or clearing a graph within a certain time frame are
proven to be at least as intractable.

• We provide bounds on the minimum speed required to
clear complete trees of bounded degree, as well as a
linear-time clearing strategy.

• We present simulations that perform a comparison of
different deterministic and randomized search methods
over planar graphs. These simulations indicate that one
of the randomized search methods performs consistently

better than the rest when the evader’s motion is neither
adversarial nor cooperative.

II. RELATED WORK

There is a vast literature on different variations of pursuit-
evasion games, largely overlapping with works on search-
ing. A number of survey papers have been devoted to the
coverage of the most important results in these two streams
of work. For instance, Fomin and Thilikos [7] provide a
summary of the most interesting theoretical developments
in this area, while Chung et al. [8] summarize results
and experiments that are relevant to pursuit-evasion games
performed in a field robotics setting.

A large number of works have been devoted to the study of
the complexity of searching. For instance, Parsons [1] raised
the question of what is the minimum number of pursuers
required to deterministically clear an arbitrary graph, in other
words, what is its search number. In that work, the search
number of trees is computed. but for the case of arbitrary
graphs, only bounds are provided. Megiddo et al. [3] showed
that finding the search number of an arbitrary graph is
NP-complete, and provided an algorithm for computing a
clearing strategy for the team of pursuers on trees. Barriere
et al. [9] examine how the search number changes if we
impose restrictions on the clearing strategy, such as no
recontaminations1 for example. Borie et al. [10] present
numerous results on the complexity of clearing schedules
that are optimal with respect to time or distance travelled. In
a continuous setting, Guibas et al. [2] show that computing
the search number for an arbitrary polygonal environment
is NP-hard, and they provide bounds on it. Murrieta-Cid et
al. [11] prove that deciding whether a pursuer can maintain
visual contact with an evader, given a polygonal environment
and their initial positions, is NP-complete.

Aside from complexity considerations, many algorithms
and heuristics for searching arbitrary environments have
been proposed. For instance, Adler et al. [12] present a
randomized algorithm for finding an adversarial evader in
a graph, and compute the expected time by which the
search will terminate. Bhattacharya and Hutchinson [13]
compute a Nash equilibrium of purser and evader strategies
in a polygonal environment, where the pursuer wants to
maintain visibility of the adversarial evader. Kolling and
Carpin [14] present an algorithm for clearing trees when the
team of robots have limited sensing capabilities. Bhadauria
and Isler [15] show that if the pursuers know each other’s and
the evader’s position, then only three pursuers are required
to capture the evader in any polygonal environment with
obstacles.

A number of algorithms and heuristic have been designed
with deployment in a field robotics setting, and several such
pursuit-evasion experiments have been performed. Vieira
et al. [16] performed experiments with networked robots
that have complete knowledge of each other’s approximate
location, and are trying to find multiple evaders. Hollinger et

1Recontamination refers to the evader entering an already explored region

al. [17] presented an approximation algorithm for the prob-
lem of selecting pursuer paths that are likely to cross frequent
paths of a non-adversarial evader, and provided experimental
validation. Kleiner et al. [18] presented a guaranteed search
algorithm that assumes a digital elevation model as an input,
and conducted large-scale outdoor experiments with multiple
human searchers and evaders to demonstrate their approach.
Lastly, Vidal et al. [19] performed pursuit-evasion experi-
ments where the team of pursuers consisted of ground and
unmanned aerial vehicles pursuing a ground evader robot.
Thus, they managed to demonstrate both the practicality of
their heuristics and the complexity inherent in deploying
realistic pursuit-evasion scenarios.

III. THE COMPLEXITY OF CLEARING

We first examine the complexity of computing the mini-
mum speed advantage the pursuer needs to have in order to
clear the environment and thus find the evader. To this end
we assume a discretized model of the environment, which we
represent by a graph G = (V,E). We also assume motion
takes place in discrete time and that at the end of each time
step both the pursuer and the evader will reside on a node of
the graph. In other words, we consider node search, where
edges signify transitions between nodes, without making it
possible for the agents to reside on an edge at the end of a
time step. As such, the evader can traverse one edge in one
time step, while the pursuer can traverse sp ∈ {1, ..., 2|E|}
edges 2, which is going to denote his speed. Under these
assumptions we let Sn be a star-shaped tree on n nodes.

Definition 1: Let CLEAR(Sn, sp, t, v0) be the decision
problem that returns ’yes’ if and only if Sn can be cleared
by a single pursuer with initial position v0 on the tree and
speed sp in time t ∈ Q ∩ [0,∞].
In order to classify the complexity of CLEAR and other re-
lated problems, we are going to need the following problem:

Definition 2: Let 3PARTITION(x1, x2, ..., x3n) be the de-
cision problem that returns ’yes’ if and only if the positive
integers x1, x2, ..., x3n, whose sum is nB where B ∈ N, can
be partitioned into triples that have the same sum, B. 3PAR-
TITION has been shown to be strongly NP-complete [20],
in the sense that it remains NP-complete even if the input
numbers x1, x2, ..., x3n are bounded by a polynomial in n.

Theorem 1: CLEAR(Sn, sp, t, v0) is NP-complete.
Proof: We herewith construct a polynomial-time Turing

reduction from 3PARTITION to CLEAR. Given a set of
positive integers x1, x2, ..., x3n we construct a star-shaped
tree with 3n branches, as shown in Fig. 1. The ith branch
contains xi nodes, including the root. We claim that a 3-
partition exists if and only if this tree can be cleared by
a single pursuer, having speed sp = 2(B − 3), in time
t = n−max

i
{xi − 1}/(2(B − 3)), starting from the root.

(⇒) Assume a 3-partition exists, and consider an arbitrary
triple. Its sum is B =

∑3n
i=1 xi/n. A pursuer with speed

sp = 2(B−3) can start from the root, clear the three branches
corresponding to the triple and return to the root in one time

22|E| allows a tour of the graph in one time step

Fig. 1. An example of a tree construction used in the reductions. In this
example, (y1, y2, y3) = (2, 3, 4) and (y4, y5, y6) = (5, 6, 7) are two
triples of positive integers, some of the 3n numbers that are the input of a
3PARTITION instance.

unit, while the evader has crossed only one edge. The pursuer
can thus clear the remaining n−1 triples in time n−1. Since
the last branch of the last triple does not require going back
to the root, we should only take it into account once. To
minimize the time it takes to clear the tree the pursuer must
leave the longest branch for last. So, the tree can be cleared
in time t = n−max

i
{xi − 1}/(2(B − 3)).

(⇐) Assume a 3-partition does not exist. Then for any
partition of x1, x2, ..., x3n into triples, we will be able to
find two sets {y1, y2, y3} and {y4, y5, y6} such that without
loss of generality: y1 +y2 +y3 < B, y4 +y5 +y6 > B, none
of the yi is max{xi}, and no repartition of these six numbers
into two triples would make both sums B. An example of
this is shown in Fig. 1. We want to show that a pursuer with
speed sp = 2(B − 3) cannot clear these two branches in
time t ≤ 2, while being able to clear the remaining n − 2
branches in time n− 2−max

i
{xi− 1}/(2(B− 3)). Suppose

the pursuer decides to clear y1, y2, y3 first, which will require
a portion of the first time unit. If he spends the remaining
of that portion at the root, to avoid possible recontamination
by the evader, then he will need more than one time unit to
clear y4, y5, y6, so we are done. If he decides to spend the
remaining portion of the first unit clearing part of y4, y5, y6,
even if he arrives at the root at the end of the second time
unit, y1, y2, y3 or some of the other triples will have been
recontaminated. So, additional time will be required to re-
clear them.

This shows that CLEAR is NP-hard. The trajectory of the
pursuer on the tree is a polynomial-time-verifiable certificate
for CLEAR(Sn, sp, t, v0) which makes it NP-complete.

It is interesting to compare this result with the problem
of computing the minimum number of pursuers, each with
speed equal to or less than that of the evader, required to
clear a graph. Even though that problem was shown to be
NP-complete for general graphs, it is tractable for the case
of trees, where a linear-time algorithm for computing the
search number is available [1], [3], [10].

In our variant of the problem even the case of star-shaped
trees is computationally intractable for a single pursuer. This
is due to the size of the configuration space of the game,
which for the case of star-shaped trees can be denoted
by (c1, c2, ..., cb, p). ci is the number of nodes that are
currently cleared on the ith branch, and p is the current
node at which the pursuer resides. Clearly, ci ∈ Θ(n) and
p ∈ Θ(n) so the size of the configuration space is Θ(nb+1).

If the number of branches is also Θ(n) then the
size of the configuration space becomes non-polynomial.
The goal of the pursuer is to find a simple path from
(0, 0, ..., 0, root) to any of the following configurations
(max{c1},max{c2}, ...,max{cb}, ∗) in this state space. The
edges linking these configurations depend on the speed
advantage sp that we allow the pursuer, which can range
from 1 to 2(n − 1). The more speed we allow, the denser
the connectivity of the state space. Therefore, given a certain
pursuer speed, a clearing strategy is possible when there is
a path connecting the starting state to one of the goal states.
When sp = 2(n − 1), for example, there are direct edges
connecting them, so the pursuer can clear the star-shaped
tree in one time unit. Clearly, if we restrict the number of
branches b to be fixed, the size of the state space becomes
polynomial and typical graph-searching algorithms can give
us a clearing strategy. It is not immediately obvious, however,
if in the case of general trees restricting the branching factor
puts CLEAR in P . One of the things that we can say about
these trees is the following:

Lemma 1: Let Th be a full tree of height h, with each
node having fixed degree b. Then the minimum pursuer speed
required to clear Th satisfies h ≤ sp ≤ 2bh.

Proof: Let sh be the minimum speed required, with
s0 = 0 and s1 = 1. We can extend an optimal clearing
strategy on Th−1 just by allowing 2b additional speed on the
pursuer. Whenever the optimal strategy for Th−1 visits the
leafs of Th−1 a 2b speed increase will allow it to clear the
leafs of Th as well. So, sh ≤ sh−1 + 2b. Also, Th cannot be
cleared with speed sh−1, which can be seen from full binary
trees of height 2,3 and 4, so sh > sh−1. Recursion over h
gives us the result.

A linear-time clearing strategy for full trees of fixed degree
is shown in Alg. 1. The pursuer must traverse the path
produced by that algorithm with speed sp = 2bh. Essentially,
the path starts from the root, clears a new set of leafs, and
goes back to the root. Each time a node is visited all its
children are re-cleared, which prevents recontamination. At
each return to the root the set of cleared nodes is augmented
by at least b leafs, so the algorithm terminates in linear time.

Other variants of CLEAR are also computationally in-
tractable, even for the case of stars. For instance, computing
the minimum time in which a star is clearable by a pursuer
with speed sp, or computing the minimum speed at which
a star is clearable at a given time t. This is shown in the
following theorems.

Definition 3: Let MINTIME-CLEAR(Sn, sp, v0) = t∗ be
the optimization problem of computing the minimum time
t∗ at which a star-shaped tree Sn is clearable by a single

Algorithm 1 CLEAR-FULL-TREE(root)
Let U be the nodes that are parents of leafs, ordered from
left to right
for each node u in U do

if u has not been visited then
Let P be the path from root to u
for i = 1...|P | − 1 do

clear the children of node P[i] except P[i+1]
go to P[i+1]

end for
for i = |P |...2 do

go to P[i-1]
clear the children of node P[i-1] except P[i]

end for
end if
mark u as visited

end for

pursuer with speed sp who starts at node v0.
Definition 4: Let MINSPEED-CLEAR(Sn, t, v0) = s∗p be

the optimization problem of computing the minimum speed
s∗p with which a single pursuer can clear a star-shaped tree
Sn in time t, starting at node v0.

Definition 5: Let RANGE-CLEAR(Sn, s
max
p , tmax, v0)

be the decision problem that returns ’yes’ if and only if the
star Sn can be cleared within time tmax by a pursuer who
has speed at most smax

p .
Theorem 2: MINTIME-CLEAR(Sn, sp, v0) = t∗ and

MINSPEED-CLEAR(Sn, t, v0) = s∗p are NP-hard.
Proof: The exact same reduction from 3PARTITION

as presented in Theorem 1 can be used in this case too.
We observe that in that construction t∗ = n − max{xi −
1}/(2(B−3)) is the minimum time at which the star can be
cleared given the pursuer speed 2(B−3), and conversely, the
minimum speed at which the star is clearable in the given
time n−max{xi − 1}/(2(B − 3)) is s∗p = 2(B − 3).

Theorem 3: RANGE-CLEAR(Sn, s
max
p , tmax, v0) is NP-

complete.
Proof: Via a reduction from the decision version of

MINSPEED-CLEAR(Sn, t, v0) = s∗p, which is NP-complete.
To answer that decision problem we can apply RANGE-
CLEAR(Sn, s, t, root(Sn)) for all possible speeds s. The
same polynomial-time-verifiable certificate that was used in
Theorem 1 is valid here, too.

Definition 6: Let MINSPEED-CLEAR(Sn, v0) = s∗p be
the optimization problem3 of computing the minimum speed
s∗p with which a single pursuer can clear a star-shaped tree
Sn, starting at node v0.

Theorem 4: MINSPEED-CLEAR(Sn, v0) = s∗p is NP-
hard.

Proof: The reduction presented in Theorem 1 shows
that a 3-partition exists if and only if the star can be cleared
with a certain speed at a certain time. It does not guarantee

3The difference between Def. 4 and Def. 6 is that the latter does not have
a deadline by which the clearing must happen.

that 2(B−3) is the minimum speed at which the star can be
cleared. For example, a speed of 2maxxi can also guarantee
clearing of the star. We want to modify that reduction so that
sp = 2(B − 3) is indeed the minimum speed at which the
modified star can be cleared.

Consider the following modification to the star presented
in the proof of Theorem 1: we add s2p new branches to that
star, each containing B − 2 nodes, including the root. A
pursuer with speed sp = 2(B − 3) can clear each of these
new branches, starting and ending at the root, in exactly one
time unit. The old portion of the tree can also be cleared
with that speed.

We claim that the new star cannot be cleared with speed
less than sp. This is because the first attempt to clear one of
the branches of length B − 2 would allow recontamination
of the root. At the next time step 3n + s2p − 1 branches will
have an a recontaminated edge. Re-clearing these edges will
take time at least twice the number of those edges, by which
time the branch we started with is going to be completely
recontaminated.

Corollary 1: The complexity of all the above problems
remains true when stars are replaced with trees, and general
graphs.

IV. HEURISTIC SEARCH

The practical significance of these results is that in the
scenario where a single pursuer has lost visual contact with
the evader and wants to recover line of sight, computing
time- or speed-optimal clearing strategies is computation-
ally intractable, except in simple cases. Therefore, search
strategies that do not guarantee clearing, but still can find
the evader in bounded expected time, may be of interest. In
the following section, we discuss a number of deterministic
and randomized search heuristics that could be used by
the pursuer in the presence of a non-cooperative and non-
adversarial evader.

Note that we model the evader motion as a random walk
since that provides an effective pessimistic bound for a
cooperative evader (i.e. it is not helping, but it is not actively
using oracular knowledge to avoid capture). This assumption
has three attributes that are desirable for our experiments:
first, the evader’s motion is independent of the pursuer’s
plan (non-adversarial); second, his motion is continuous in
the sense that he is not allowed to jump or teleport to distant
nodes in the graph; and third, due to its lack of predictability
an evader performing random walk can be seen as fully non-
cooperative4.

We examine four different pursuer search plans that do
not generally provide deterministic guarantees on clearing:
depth-first search (DFS), breadth-first search (BFS), shortest
path to a random target node (SPRT), and performing random
cycles in the graph (RC). In SPRT the pursuer randomly
chooses a target node, and follows the shortest path from
the current node to it. He repeats this process until the

4A partially cooperative evader would allow some (predictable) determin-
ism in his motion.

evader is found. The RC heuristic involves computing a
fundamental set of cycles of the graph, using the algorithm
presented in [21], and performing a random walk over those
cycles. Decomposing the pursuer’s trajectory into cycles is a
technique with provably good capture times under a different
set of assumptions on the motion of the pursuer and the
evader, as shown in [12].

To compare these pursuer plans against each other we
restrict the motion of the evader to maximal planar graphs.
We generate these graphs on n nodes and 3n − 6 edges
randomly by recursive random construction of maximal
planar graphs on n− 1 nodes5. At each time step we allow
the evader to cross one edge on the planar graph, and the
pursuer to cross sp edges. We ran simulations over planar
graphs with 50 to 1000 nodes, and for pursuer speeds 1 to
100. To quantify the performance of each pursuer strategy we
do the following: for each pair of parameters we averaged the
time it took the pursuer to find the evader over 100 random
samples of maximal planar graphs and over 10 different
initial positions for the two agents.

In addition, we evaluated each of the four pursuer strate-
gies mentioned above in two settings: one where the pursuer
is allowed to move on any edge of the planar graph, and
another, where he is restricted to a spanning tree. So, in total
we evaluated eight pursuer strategies. It is worth mentioning
that applying the random cycles strategy on trees required
modification: we modified it so that the pursuer starts from
the root, randomly chooses a leaf and visits it, and then
returns back to the root. In all eight cases the evader is
moving on the planar graph.

The first observation that we can make from what our
simulations indicate is that restricting the pursuer’s motion
to a spanning tree of the original planar graph does not
affect the expected capture time asymptotically, as the speed
of the pursuer increases. This is illustrated in Fig. 2 which
shows the difference between the expected capture times on
a spanning tree and the expected capture times on the planar
graph. In fact, the same trend is visible in the difference of
the standard deviations of capture times, which is illustrated
in Fig. 3. What this indicates is that even though spanning
trees only include approximately one third of the planar
graph’s edges, the fact that we are performing node search
and we do not allow the evader to hide on edges makes the
capture time depend mainly on how quickly each method
can cover the nodes of the graph.

Our simulations also indicate that shortest-path to a ran-
dom target consistently outperforms the other techniques
both on spanning trees and on the full planar graph. In fact,
in the case of spanning trees, among the 2000 combinations
of (sp, |V |) parameters, SPRT had the lowest mean capture
time in 74% of the cases, while DFS was the best method
in 18%. This is shown in Fig. 4 where we have plotted the
heuristic with the lowest mean capture time for each set of
parameters that we examined in our simulations. As expected
from our previous observation regarding the restriction to a

5We used LEDA 6.3 and Python’s networkx in our implementation

0 20 40 60 80 100
−300

−250

−200

−150

−100

−50

0

50

100

150

200
Mean Difference Between Capture Times on Spanning Tree vs. Entire Graph

pursuer speed

tim
e

to
 c

ap
tu

re

DFS
BFS
SPRT
Rand. Cycles

Fig. 2. The difference between mean capture times between restricted and
unrestricted pursuer motion. The negative difference for the RC heuristic
shows that the tree version of the heuristic performed consistently better
than the graph version.

0 10 20 30 40 50 60 70 80 90 100
−250

−200

−150

−100

−50

0

50

100
Difference Between Std. Dev. of Capture Times on Spanning Tree vs. Entire Graph

pursuer speed

tim
e

to
 c

ap
tu

re

DFS
BFS
SPRT
Rand. Cycles

Fig. 3. The difference between standard deviations of capture times
between restricted and unrestricted pursuer motion. Again, the negative
difference for the RC heuristic shows that the tree version of the heuristic
had a lower standard deviation than the graph version.

spanning tree, the distribution of methods with the lowest
capture time does not change significantly when we transition
from the tree to the graph. When pursuer motion on the
graph is allowed SPRT performs best in 54% of the cases,
while DFS is best in 45% of the cases, which is shown in
Fig. 5. These results indicate that SPRT is a very promising
heuristic, so its expected cover time, and meeting time with
a random walk needs to be formally analyzed using results
similar in flavor to [22].

V. CONCLUSIONS & FUTURE WORK
In this work we examined the variant of pursuit-evasion

games in which the pursuer is faster than the evader, which
is an assumption that has been largely neglected by existing
literature. Yet, it is a natural assumption in many settings,
such as clearing contaminated waters, performing search and
rescue missions using aerial vehicles, or recovering visual
contact with a non-adversarial evader after losing line of
sight due to the structure of the surrounding environment.
We proved that the problem of computing the minimum
speed at which a single pursuer can clear a graph is NP-
hard, and so are many other problems related to it. We

|V|

pu
rs

ue
r

sp
ee

d

Pursuer strategy with lowest mean capture time (on trees)

100 200 300 400 500 600 700 800 900

10

20

30

40

50

60

70

80

90

DFS
BFS
SPRT
Rand. Cyc.

Fig. 4. Each entry with index (sp, |V |) in this matrix shows the label
of the heuristic which had the lowest average capture time in the set of
experiments that were performed with speed sp and node size |V |, and
restricted the pursuer within the spanning tree. SPRT outperforms the other
heuristics for this set of parameters.

|V|

pu
rs

ue
r

sp
ee

d

Pursuer strategy with lowest mean capture time (on graphs)

100 200 300 400 500 600 700 800 900

10

20

30

40

50

60

70

80

90

DFS
BFS
SPRT
Rand. Cyc.

Fig. 5. Each entry with index (sp, |V |) in this matrix shows the label
of the heuristic which had the lowest average capture time in the set of
experiments that were performed with speed sp and node size |V |, and
allowed the pursuer to move in the planar graph, just like the evader. SPRT
and DFS were the heuristics that performed best.

provided logarithmic bounds on the minimum speed required
to clear full trees of fixed degree, and we presented a linear-
time algorithm that allows a pursuer to clear said trees.
Finally, we provided empirical evaluation of search heuristics
that enable the pursuer to find a non-adversarial and non-
cooperative evader on planar graphs, and we identified a
randomized heuristic which seems to outperform classical
well-known heuristics. Avenues for future work include
designing algorithms for motion in continuous environments
with obstacles, in order to clear a diffusive evader. We are
also interested in the impact of stronger models of evader
behavior, since our eventual goal includes implementation in
contexts where the evader behavior is genuinely cooperative.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and
Research Council of Canada (NSERC) as well as the Walter

Sumner Foundation for their support.

REFERENCES

[1] T. Parsons, “Pursuit-evasion in a graph,” in Theory and Applications
of Graphs, ser. Lecture Notes in Mathematics, 1978, vol. 642, pp.
426–441.

[2] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani,
“Visibility-based pursuit-evasion in a polygonal environment,” in Inter-
national Journal of Computational Geometry and Applications, 1997,
pp. 17–30.

[3] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou, “The complexity of searching a graph,” in Journal of
the ACM, vol. 35, no. 1, Jan 1988, pp. 18–44.

[4] S. Bhattacharya and S. Hutchinson, “Approximation schemes for two-
player pursuit evasion games with visibility constraints,” in Proceed-
ings of Robotics: Science and Systems IV, Zurich, Switzerland, June
2008.

[5] S. Lavalle, C. Becker, and J.-C. Latombe, “Motion strategies for
maintaining visibility of a moving target,” in In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA, 1997,
pp. 731–736.

[6] B. Tovar and S. M. LaValle, “Visibility-based Pursuit–Evasion with
Bounded Speed,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1350–1360, Nov. 2008.

[7] F. V. Fomin and D. M. Thilikos, “An annotated bibliography on
guaranteed graph searching,” Theoretical Computer Science, vol. 399,
no. 3, pp. 236–245, June 2008.

[8] T. H. Chung, G. a. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316,
July 2011.

[9] L. Barrière, P. Fraigniaud, N. Santoro, and D. M. Thilikos, “Searching
is not jumping,” in Graph-Theoretic Concepts in Computer Science,
29th International Workshop, WG, 2003, pp. 34–45.

[10] R. Borie, C. Tovey, and S. Koenig, “Algorithms and complexity results
for pursuit-evasion problems,” in International Joint Conference on
Artifical Intelligence, 2009, pp. 59–66.

[11] R. Murrieta-Cid, R. Monroy, S. Hutchinson, and J.-P. Laumond,
“A Complexity result for the pursuit-evasion game of maintaining
visibility of a moving evader,” IEEE International Conference on
Robotics and Automation, pp. 2657–2664, May 2008.

[12] M. Adler, H. Racke, N. Sivadasan, C. Sohler, and B. Vocking,
“Randomized pursuit-evasion in graphs,” in Proceedings of the In-
ternational Colloquium on Automata, Languages and Programming.
SIAM, 2002, pp. 901–912.

[13] S. Bhattacharya and S. Hutchinson, “On the Existence of Nash
Equilibrium for a Two-player Pursuit–Evasion Game with Visibility
Constraints,” The International Journal of Robotics Research, vol. 29,
no. 7, pp. 831–839, Dec. 2009.

[14] A. Kolling and S. Carpin, “Pursuit-Evasion on Trees by Robot Teams,”
IEEE Transactions on Robotics, vol. 26, no. 1, pp. 32–47, Feb. 2010.

[15] D. Bhadauria and V. Isler, “Capturing an evader in a polygonal
environment with obstacles,” in IJCAI, 2011, pp. 2054–2059.

[16] M. Vieira, R. Govindan, and G. Sukhatme, “Scalable and practical
pursuit-evasion with networked robots,” Intelligent Service Robotics,
vol. 2, pp. 247–263, 2009.

[17] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-
robot search for a moving target,” Int. Journal of Robotics Research,
vol. 28, no. 2, pp. 201–219, Feb. 2009.

[18] A. Kleiner, A. Kolling, M. Lewis, and K. Sycara, “Hierarchical visibil-
ity for guaranteed search in large-scale outdoor terrain,” Autonomous
Agents and Multi-Agent Systems, vol. 26, no. 1, pp. 1–36, Aug. 2011.

[19] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry, “Probabilis-
tic pursuit-evasion games: theory, implementation, and experimental
evaluation,” Robotics and Automation, IEEE Transactions on, vol. 18,
no. 5, pp. 662 – 669, oct 2002.

[20] M. R. Garey and D. S. Johnson, “Strong np-completeness results:
Motivation, examples, and implications,” Journal of the ACM, vol. 25,
no. 3, pp. 499–508, July 1978.

[21] K. Paton, “An algorithm for finding a fundamental set of cycles of a
graph,” Commun. ACM, vol. 12, no. 9, pp. 514–518, Sept. 1969.

[22] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff,
“Random walks, universal traversal sequences, and the complexity of
maze problems,” in Proceedings of the 20th Annual Symposium on
Foundations of Computer Science, 1979, pp. 218–223.

