IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

3353

Online Bagging and Boosting for
Imbalanced Data Streams

Boyu Wang and Joelle Pineau

Abstract—While both cost-sensitive learning and online learning have been studied separately, these two issues have seldom been
addressed simultaneously. Yet, there are many applications where both aspects are important. This paper investigates a class of
algorithmic approaches suitable for online cost-sensitive learning, designed for such problems. The basic idea is to leverage existing
methods for online ensemble algorithms, and combine these with batch mode methods for cost-sensitive bagging/boosting algorithms.
Within this framework, we describe several theoretically sound online cost-sensitive bagging and online cost-sensitive boosting
algorithms, and show that the convergence of the proposed algorithms is guaranteed under certain conditions. We then present
extensive experimental results on benchmark datasets to compare the performance of the various proposed approaches.

Index Terms—Bagging, boosting, ensemble learning, cost-sensitive learning, online learning, class imbalance problem

1 INTRODUCTION

N many real world applications, such as medical diagno-

sis [38], network intrusion detection [10], and spam filter-
ing [16], the distribution between the classes of examples is
not well balanced. Consider a scenario where we want to
automatically detect whether an incoming individual is an
intruder or not, we will typically have many more negative
examples (i.e., non-intruders) than positive examples (i.e.,
intruders). Conventional machine learning algorithms usu-
ally have difficulty learning from imbalanced class problems
since their objective is to minimize the overall error rate, thus
implicitly treating all misclassification costs equally. As a
result, these algorithms may produce trivial results, typically
classifying all test examples as negative (i.e., the majority
class). Additionally, it is often the case that the positive
(minority) class is the one of greater interest: the expected cost
of missing an intruder may be much higher than the cost of
mis-identifying a non-intruder. An effective way to handle
the class imbalance problem is to define the learning objective
using a cost-sensitive criterion, increasing the cost of misclas-
sifying rare examples compared to the cost of classifying com-
mon ones [15], [21].

For some applications, it is necessary to handle class
imbalance in the context of learning from data streams. Con-
sider for example the task of automatically detecting epilep-
tic seizures from EEG records [19]: seizures are relatively
rare compared to non-seizure brain activities, and the EEG
data is collected incrementally over time, yet one would like
to deploy the seizure detection system as soon as some mod-
est amount of training data is available for that patient (e.g.,
a handful of seizures), with the possibility of gradually
improving the system as more data becomes available.
Another example is credit card fraud detection, where the

o The authors are with the School of Computer Science, McGill University,
McConnell Engineering Bldg., 3480 University Street, Montreal, QC H3A
OE9, Canada. E-mail: boyu.wang@mail .mcgill.ca, jpineau@cs.mcgill.ca.

Manuscript received 10 Nov. 2015; revised 9 Sept. 2016; accepted 11 Sept.
2016. Date of publication 14 Sept. 2016, date of current version 2 Nov. 2016.
Recommended for acceptance by |. Gama.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2016.2609424

positive instances are rare, data arrives in a stream, and fur-
thermore the size of the dataset prevents holding it all in
memory at the same time.

Many techniques have been proposed to deal with the class
imbalance problem in the setting of batch learning. Of these,
ensemble learning approaches have been shown to be particu-
larly effective [18]. In this paper, we will therefore restrict our
attention to bagging and boosting approaches to cost-sensitive
learning. Note that, as of yet, none of these approaches have
been extended to the online learning problem."

The main goal of this paper is to shed light on the joint
problem of learning from imbalanced datasets in a data
stream setting. Although these two issues have been well
studied independently in the past decades, the research on
simultaneously tackling both problems is limited. The main
contribution of this paper consists of an online cost-sensitive
ensemble learning framework, which generalizes a batch of
widely used bagging and boosting based cost-sensitive
learning algorithms to their online versions. In particular,
we present online versions of UnderOverBagging [48],
SMOTEBagging [48], AdaC2 [43], CSB2 [44], RUSBoost [41],
and SMOTEBoost [7]. In addition, we provide theoretical
analysis showing the consistency between the new online
variants and their original batch mode counterparts. This
analysis confirms that under certain conditions, as the num-
ber of examples approaches infinity, the models generated
by online cost-sensitive ensemble learning algorithms con-
verge to that of batch cost-sensitive ensembles.

The performance of the proposed online cost-sensitive
bagging and boosting algorithms is evaluated on several
benchmark datasets. This empirical analysis primarily
focuses on the consistency between the new online variants
and the original batch mode versions. We observe that the
bagging-based algorithms achieve better performance than
boosting-based algorithms in terms of both consistency and
value of the area under the ROC curve (AUC). In addition,
we also empirically demonstrate that our algorithms

1. In this paper, online learning is referred to the learning paradigm
responding immediately to a new instance and then discarding it. In
some cases, the positive examples (minority class) are stored to create
additional synthetic samples.

1041-4347 © 2016 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3354

outperform two recent state-of-the-art online cost-sensitive
learning algorithms in terms of misclassification cost.

The paper is organized as follows. Section 2 reviews
related work of class imbalance learning and online learning.
Section 3 presents the technical background for our work.
The full online cost-sensitive ensemble learning framework
and its many instantiations is described in Section 4, fol-
lowed by the theoretical analysis in Section 5. The experi-
mental results are reported in Section 6. Section 7 completes
the paper with conclusions and avenues for future work.

2 RELATED WORK

Existing approaches to the class imbalance problem can be
roughly categorized into algorithm-level approaches and
data-level approaches. The former directly modify traditional
algorithms to achieve cost sensitivity by taking different mis-
classification costs into consideration when designing the
algorithms, such that the misclassification cost of positive
examples is higher than that of negative ones. The classifier is
then trained to minimize the cost (over all examples), rather
than the classification error. There are several ways to incor-
porate the modified classification costs. For example, a cost-
sensitive SVM can be derived by kernel modification [49],
biased penalty [32], or loss function modification [34]. For
decision tree, cost sensitivity can be introduced by probabilis-
tic estimate calibration [50] or using different pruning meth-
ods [13]. Cost-sensitivity can also be imposed on the model by
a post-processing step, such as associating costs to prediction
errors and then tuning the model, or by moving the decision
threshold to minimize the expected cost [3]. In the case of
data-level approaches, a pre-processing step is added (prior
to learning) to artificially rebalance the class distribution by
undersampling the negative class, or oversampling the positive
class, or even creating synthetic positive examples [6]. After
resampling, any conventional (cost-insensitive) algorithm can
then be applied on the rebalanced dataset. One advantage of
this strategy is that it is applicable to any existing classification
algorithm. Such over-/under-sampling techniques can also be
incorporated within ensemble learning algorithms [39], and
have received much attention recently due to their convincing
performance on imbalanced datasets [18], [26].

Regarding the problem of learning from data streams,
some basic classification algorithms can easily be extended
to the online setting, including k-NN, naive Bayes classifier,
binary linear discriminant analysis (LDA), and quadratic
discriminant analysis (QDA). In addition, the incremental/
online versions of several more sophisticated algorithms
have been proposed in the literature, including but not lim-
ited to decision trees [45], random forests [12], [40], multi-
class LDA [27], [33], logistic regression [29], support vector
machines [5], [30], and other kernel methods [24], [28].
Online versions of ensemble learning techniques, bagging
and boosting, were also derived in [1], [8], [36].

More recently, online learning algorithms for imbalanced
data streams have been proposed and studied empirically
and theoretically in [47], [51]. The work in [51] aims at maxi-
mizing the AUC value, and the algorithms proposed in [47]
directly deal with the cost-sensitive measures (e.g., misclassi-
fication cost). However, both of these methods only focus on a
simple linear model (i.e., perceptron). Our proposed frame-
work improves upon this in two significant ways: (i) accom-
modating any online learning algorithm, and (ii) producing
more flexible (i.e., non-linear) class boundaries.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

3 TECHNICAL BACKGROUND

In this section, we briefly review the standard bagging and
boosting algorithms, as well as their online and cost-sensi-
tive versions, which motivate the proposed online cost-sen-
sitive ensemble framework.

3.1 Standard Bagging and Boosting

Ensemble learning algorithms work by combining the out-
puts of multiple base learners. The basic insight is to improve
the generalization ability of individual classifiers by training
multiple base classifiers on different datasets (sampled from
the original dataset) and combining the results. Averaging
the outputs of several classifiers helps reduce the variance
component and/or the bias in the classification error [2].
Varying the approach used to generate the datasets and to
average the base classifiers produces distinct ensemble
methods. Two representative techniques among them are
bagging [4] and boosting (AdaBoost) [17].

Given a data set S = {(x1,41),...,(xn,yn)} of size N,
where z,, € X, y, € Y = {0, 1}, bagging constructs M classi-
fiers {h,,},m = {1,..., M} with bootstrap replicas {S,,} of
S, where S, is obtained by drawing examples from the orig-
inal data set S with replacement, usually having the same
number of examples as S. The diversity among the classi-
fiers is introduced by independently constructing different
subsets of the original dataset. After constructing the
ensemble of solutions, the prediction of the class of a new
example is given by majority voting. The pseudo-code for
bagging is shown in Algorithm 1, where I(w) is the indica-
tor function of event w.

Algorithm 1. Bagging [4]

Input: S: data set, M: number of base learners
1: form=1,...,M do

2: S, = Sample_with_replacement(S, N)

3: Train a base learner h,, — Y using .S,

4: end for

Output: H(z) = arg max,cy M I (ha(z) = y)

AdaBoost (Algorithm 2) is another widely used ensemble
learning algorithm [17]. Unlike Bagging, which treats all
examples equally at each iteration, AdaBoost focuses more
on difficult examples. In particular, AdaBoost sequentially
constructs a series of base learners in such a way that exam-
ples that are misclassified by the current base learner h,, are
given more weight in the training set for the following
learner h,,11, whereas the correctly classified examples are
given less weight. More specifically, the weights of all exam-
ples are equally initialized at the first iteration (i.e.,
Di(n) =+ for all ne{1,...,N}). At the mth iteration, the
base learner h,, is trained on examples weighted by the dis-
tribution D,,, and then the weight of x,, at the next iteration
is updated according to

Dm(n)exp(_am(QI(hm(x'n) = yn) - 1))
Zm '

Zf:l I(hm (xn)=yn)
SO I (n)#m)
tion factor to ensure that the weights D,,.;(n) sum to one.
However, Eq. 1 cannot be used to implement online boost-
ing since the normalization factor Z,, is unavailable during

Dm+1 (n) = (1)

where o, = log ,and Z,, is the normaliza-

WANG AND PINEAU: ONLINE BAGGING AND BOOSTING FOR IMBALANCED DATA STREAMS

the online learning process. To sidestep this problem, the
update rule can be reformulated as

hm(mn) = Yn
hm(l‘n) 7'é Un

where ¢, = Zi\;l D,y(n)I(hy(x,) # y,), and one can check
that Eq. 2 is equivalent to Eq. 1. That is, the summation

ZL Dy, 1(n) = 1 after each update without normalization,
which is crucial for the online version of boosting [36], and
will be equally important in our proposed online cost-sensi-
tive boosting algorithms. In standard AdaBoost, after each
update, either the reweighted examples can be directly used
to train the next base learner, or they are first resampled
according to the weights and then the unweighted samples
are used to train the base learner. In this paper, all boosting
techniques are implemented by resampling. The reasons are
three-fold: first, sampling based boosting algorithms are con-
sistent with bagging techniques; second, they are also consis-
tent with their online counterparts introduced later, which
simulate sampling with replacement by using Poisson distri-
bution; finally, for some learning algorithms reweighting the
training set is not feasible.

1
2(1—€m)
Dyi1(n) = D (n) ¥ { e

2em 7

2

Algorithm 2. AdaBoost [17]

Input: S: data set, M: number of base learners
1: Initialize Dy (n) = 4 foralln € {1,...,N}
2: form=1,...,M do

3: Train a base learner h,, — Y using S with distribution D,,
N
4 €m = Zn:l Dm(n)j(hm(xﬁ) # yn)
5. forn=1,...,Ndo 1
7 7 2(0—em) h’m('TN) = Yn
6: Dini1(n) = Dy (n) x {2(11) B () #
7: end for Tem? m(Tn) # Yn
8: end for

Output: H(z) = arg max,cy Zﬁle log (ﬂ)[(hm(x) =v)

€m

Algorithm 3. Online Bagging [36]

Input: S: data set, M: number of base learners
1: forn=1,...,Ndo
2: form=1,...,Mdo
3: Let k ~ Poisson(1)
4: Do k times
Train the base learner h,, — Y using (z,, y)
5: end for
6: end for
Output: H(z) = argmax,cy SV I (ha(2) =)

3.2 Online Bagging and Boosting

The framework for online ensemble learning proposed by
Oza et al. [36] is inspired by the observation that the bino-
mial distribution Binomial(p, N) can be approximated by a
Poisson distribution Poisson(\) with A = Np as N — oc. Let
the probability of success p in the binomial distribution be
equivalent to D(n) in bagging and boosting algorithms. For
example, since D(n) =+ for all examples in the bagging
algorithm, the uniform sampling with replacement of the
bagging algorithm can be approximated by Poisson(1) in its
online version. For online boosting, A can be computed by
tracking the total weights of correctly classified and misclas-
sified examples for each base learner (denoted as 3¢ and

3355

MW respectively®). The online bagging and boosting algo-
rithms are described in Algorithms 3 and 4 respectively.
The asymptotic properties of online bagging and boosting
have been studied in [36], [37], showing consistency
between the online variant and their batch counterpart.

Algorithm 4. Online AdaBoost [36]

Input: S: data set, M: number of base learners
1: Initialize A5¢ = 0, A5 = 0 forallm € {1,..., M}
2: forn=1,...,N do
3: SetA=1

4: form=1,...,M do
5: Let k ~ Poisson(\)
6: Do k times
7: Train the base learner h,,, — Y using (z,, y,)
8: if h,,,,gac,,,) =y, then W
9: A = A A e = e A < o
10: elsev) . AW
11: AV XV A, iy A g
12: end if)
13: end for
14: end for

Output: H(x) = argmax,cy > n_, log (221 (b () = y)

3.3 Cost-Sensitive Bagging and Boosting
Cost-sensitive ensemble learning methods typically manipu-
late misclassification costs via biased resampling/reweight-
ing of the data before each iteration of bagging/boosting.
With this, any cost-insensitive classifier can become cost-sen-
sitive, and be incorporated into an ensemble learning frame-
work to take advantage of the useful properties of ensembles
with respect to bias/variance reduction. The main difference
between various approaches to cost-sensitive bagging and
boosting lies in the choice of the resampling mechanism. We
briefly review six popular cost-sensitive ensemble learning
algorithms: UnderOverBagging [48], SMOTEBagging [48],
AdaC?2 [43], CSB2 [44], RUSBoost [41], and SMOTEBoost [7].
The derivation of online extensions for these algorithms is the
main contribution of this paper and is described formally in
the next section.

Given an imbalanced dataset containing N* examples in
the minority class ST and N~ examples in the majority class
S~, one straightforward approach to implement bagging-
based learning algorithms is to undersample the majority
class or oversample the minority class, which respectively
yields approaches known as UnderBagging and OverBag-
ging. UnderOverBagging [48] is a uniform approach com-
bining both UnderBagging and OverBagging. In addition,
the resampling rate a varies over the bagging iterations,
which further boosts the diversity among the base learners.
Algorithm 5 presents UnderOverBagging. We note that the
sampling method is gradually switched from undersam-
pling the majority class to oversampling the minority class.
The number of training examples for the first base learner is
lower than the last one. Since both UnderBagging and Over-
Bagging can be regarded as special cases of UnderOverBag-
ging, only UnderOverBagging is investigated in this paper.

In SMOTEBagging [48] (Algorithm 6), the negative class
is sampled with replacement at rate 100 percent (i.e.,, N~

2. The superscripts SC' and SW stand for the samples that are cor-
rectly classified and wrongly classified, respectively.

3356

negative examples are generated), while CN' positive
examples are generated for each base learner, for some
C > 1. Of these examples, m/M are generated by resam-
pling, and the rest via the synthetic minority oversampling
technique (SMOTE) [6] described in Algorithm 7. The main
idea of SMOTE is to generate synthetic examples by interpo-
lating the positive examples. As a result, all of the base
learners are trained on a more balanced and diverse dataset.
The diversity is further boosted by varying a so that the
ratio of bootstrap replicates and synthetic examples gener-
ated by SMOTE varies over the bagging iterations.

Algorithm 5. Batch UnderOverBagging [48]

Input: S: data set, M: number of base learners, C' > 1: sam-

pling rate

1: form=1,...,M do

2: a=7f;

31 S, uin = Sample_with_replacement(S™,aN")
4: o in = Sample_with_replacement(S™,aCN™)
5: Sm = Sttain + St_rain,

6: Train a base learner h,, — Y using .S,

7: end for

Output: H(z) = arg max,cy Z;{Zl I(hn(z) =1y)

Algorithm 6. Batch SMOTEBagging [48]

Input: S: data set, M: number of base learners, C' > 1: sam-
pling rate, k: number of nearest neighbors
1: form=1,...,M do

2 a=1%

3: St;a,i:[: Sample_with_replacement(S~,N~)

4: S} . = Sample_with_replacement(S™,aCN™)
5: S&=SMOTE(S',C(1 —a),k)

6: Sm = Sttam + St;ain + S;r

7: Train a base learner h,, — Y using S,

8: end for

Output: H(z) = arg max,cy Zf\,{:l I(hy(z) =v)

In [48], the sampling rate C' for UnderOverBagging and
SMOTEBagging was set as C' = £ to obtain a balanced class
distribution. However, it has been reported that the optimal
class ratio need not to be 1. To eliminate this effect, we vary
the resampling rate to generate an ROC to compare differ-
ent online and batch cost-sensitive algorithms.

AdaC2’ [43] is a boosting algorithm that takes the different
misclassification costs into consideration when calculating the
classifier weights, and updates the sample weights accord-
ingly. In particular, AdaC2 increases weight more on the mis-
classified positive examples than the misclassified negative
examples. Similarly, it decreases weight less on correctly clas-
sified positive examples compared to correctly classified neg-
ative examples. The pseudo-code for AdaC2 is shown in
Algorithm 8, where C'p is the cost of misclassifying a positive
example as a negative one, and Cy is the cost of the contrary
case. In cost-sensitive learning problems, as Cp > Cl, it can
be observed that by embedding different costs for each class
into the update formula, AdaC2 puts more weight on positive
examples than negative ones.

3. The meaning of AdaC2 and CSB2 is not specified in [43] and [44],
but we guess the acronyms stand for AdaBoost for cost-sensitive learning
and cost-sensitive boosting respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

Algorithm 7. SMOTE [6]

Input: S: data set of size N, T: oversampling rate, k: number of
nearest neighbors

1: forn=1,...,Ndo

2: fori=1,...,Tdo

3: Randomly choose one of the k nearest neighbors of x,,, 2/,
4. Calculate the difference between x,, and z,
5: Generate a random number y between 0 and 1
6: Create a synthetic instance:
"L{S'm, =Tn + V(/Iiz - :I"Tl)
7: end for
8: end for
Output: TN synthetic instances {z,,...,z§ \}

Algorithm 8. Batch AdaC2 [43]

Input: S: data set, M: number of base learners, Cp: cost of false
negative, C'y: cost of false positive
1: Initialize D;(n) = 4 foralln € {1,..., N}
2: form=1,...,M do
3: Train a base learner h,, — Y using S with distribution D,,
4: Calculate o, = 1log <E'z:1 C”DmOl)l(hm(zw:yn)),
Z":l Ch D (n) I (hn (20)#yn)

where C,, = Cpify =1, C, = Cy otherwise

5. forn=1,...,Ndo

6: Dpii(n) = C"D"l(”)e"p(_“"lz(if (an (22n)=yn) =1))
where Z,, is a normalization factor

7: end for

8: end for

Output: H(z) = arg max,cy Zf\n[:l anl(hp(z) =vy)

Algorithm 9. Batch CSB2 [44]

Input: S: data set, M: number of base learners, Cp: cost of false
negative, C'y: cost of false positive

1: Initialize Dy(n) = & foralln € {1,..., N}

2: form=1,...,M do

3: Train a base learner h,, — Y using S with distribution D,),

4: Calculate o,,, = $log (—Z"'h”‘(‘r") i im(”)),
- b)= D)
5. forn=1,...,Ndo
6: Dm+1 (Tl) _ C'gD,,L(71,)eX1)(—otméQI(hm(x,,):yn)—l))
where Z,, is a normalization factor,
Cs = 1if hy,(x,) = yn, Cs = C,, otherwise
7: end for
8: end for

Output: H(z) = arg max,cy Z)n[:l apl(hy(z) = y)

The CSB2 algorithm [44] (Algorithm 9) combines techni-
ques from AdaBoost and AdaC2. For correctly classified
examples, CSB2 updates weights as in AdaBoost, whereas
for misclassified examples, it updates weights as in AdaC2.
In addition, the voting weight of each base learner in CSB2
is the same as in AdaBoost. AdaC2 and CSB2 incorporate
different misclassification costs by directly modifying the
weight update equations. The key feature of this category of
algorithms is that the cost sensitivity is introduced by treat-
ing the examples from different classes differently. There-
fore, such approaches are categorized as cost-sensitive
boosting [18].

WANG AND PINEAU: ONLINE BAGGING AND BOOSTING FOR IMBALANCED DATA STREAMS

Algorithm 10. Batch RUSBoost [41]

Input: S: data set, M: number of base learners, C' > 1: sam-

pling rate

1: Initialize Dy (n) = 4 foralln € {1,..., N}

2: form=1,...,M do

3: Generate a new training set S’ by undersampling the majority
class

4: Train a base learner h,, — Y using $'
5 e = Yoy Din(m)I (hun(a) # yn)
6: forn=1,....,Ndo 1

7 7 21—em) hm, Tn) = Yn
7: Dyi1(n) = Dy (n) x {20_15"1) ; (zn) =y
8: end for 2em m(Tn) 7 Yn
9: end for

Output: H(z) = argmax cy ZT\Y{:I log (=) I (hyp () =)

€m

RUSBoost1 (fix the class ratio)

Generate a new training set S’ by undersampling the majority
class:

Randomly remove majority class examples until CN* of them
left, and then renormalize the weight distribution of the remain-
ing training examples with respect to their total sum of weights.

RUSBoost2 (fix the example distribution)

Generate a new training set S’ by undersampling the majority
class:

Generate CNt and N* majority and minority examples respec-
tively by sampling D,,,.

RUSBoost3 (fix the sampling rate)

Generate a new training set S’ by undersampling the majority
class:

Generate N examples according to distribution D,,, and then
undersample majority class until é of them left.

Cost sensitivity in boosting can also be achieved by sam-
pling techniques as a pre-processing step before each iteration
of the standard AdaBoost algorithm, as in UnderOverBagging
and SMOTEBagging, to bias boosting algorithms towards the
positive class, resulting in RUSBoost [41] and SMOTE-
Boost [7].* These two algorithms differ in the way they under-
sample the negative class, or oversample the positive class
using SMOTE. In particular, both algorithms rebalance the
class distribution before feeding the training data to base
learners, yet the error estimate of base learners is still mea-
sured on the original dataset. The RUSBoost and SMOTE-
Boost algorithms are shown in Algorithms 10 and 11
respectively.” For each algorithm, there are at least three dif-
ferent implementations. In RUSBoost1 (RUS1), the class ratio
is fixed, which means that the ratio of the weighted positive to
negative examples is fixed, and then the modified training set
is generated according to the weights. The proportion of
examples of the two classes for each base learner is not

4. AdC2, CSB2, and RUSBoost, SMOTEBoost were respectively cate-
gorized into different families in [18] Here, we do not distinguish them
since all of these methods can be formulated within the framework of
combining resampling techniques and conventional AdaBoost, and we
simply refer to all of them as cost-sensitive boosting algorithms.

5. RUSBoost and SMOTEBoost are originally based on AdaBoost.
M2, which is a variant of AdaBoost for multi-class classification prob-
lems. As for binary classification problems, AdaBoost.M2 with a base
learner outputting hard labels is equivalent to AdaBoost. Therefore, in
order to develop online RUSBoost and SMOTEBoost, both of them are
based on AdaBoost in this paper.

3357

necessarily fixed. In RUSBoost2 (RUS2) it is the ratio of
unweighted examples of the classes that is fixed, which means
that the proportion of examples of each class that passes
through each base learner is fixed. RUSBoost3 (RUS3) is easier
to understand: the sampling rate of the negative class is &
times that of positive class. The three implementations of
SMOTEBoost (SBO1-SBO3) are analogous to the ones of RUS-
Boost. The only difference is that instead of undersampling
the majority class, SMOTEBoost variants oversample the
minority class by generating synthetic positive examples
using SMOTE.

Algorithm 11. Batch SMOTEBoost [7]

Input: S: data set, M: number of base learners, C' > 1: sam-

pling rate

1: Initialize Dy(n) = & foralln € {1,..., N}

2: form=1,...,M do

3. Generate a new training set S’ by creating synthetic examples
from minority class using SMOTE

4: Train a base learner h,,, — Y using S’

5: €m = Z::l Dm (n)j(hm(x'n,) 7é yw,)

6: forn=1,...,Ndo 1 W () =
7: Dmm—mwx%VW,ﬂ” o
8: end fOI' 2€m ? m (:Lln) # Yn
9: end for

Output: H(z) = arg max,cy Z,‘,{Zl log (m)I(hm(:c) =)

€m

SMOTEBoost1 (fix the class ratio)

Generate a new training set S’ by creating synthetic examples
from minority class using SMOTE:

Randomly generate &~ — N* synthetic examples from minority
class, and then renormalize the weight distribution with
respect to their total sum of weights.

SMOTEBoost?2 (fix the example distribution)

Generate a new training set S’ by creating synthetic examples
from minority class using SMOTE

Generate N~ and N majority and minority examples respec-
tively by sampling D,,, and then create £ — N* synthetic
minority examples

SMOTEBoost3 (fix the sampling rate)

Generate a new training set S’ by creating synthetic examples
from minority class using SMOTE:

Generate N examples according to distribution D,,, create
(C'—1)N'* synthetic minority examples, where N'* is the num-
ber of minority examples on the mth iteration.

4 METHODS

We now derive a new collection of algorithms for online cost-
sensitive ensemble learning based on the combination of
online ensemble methods and batch cost-sensitive ensembles
described above. The main challenge for generalizing cost-
sensitive ensemble algorithms to the online setting resides in
finding a way to embed costs into online ensembles for boost-
ing algorithms without seeing all of the data. Thus a key point
for our online algorithms is to reformulate the batch cost-sen-
sitive boosting algorithms in a way that there is no normaliza-
tion step at each iteration, and then to incrementally estimate
the quantities embedded with the cost setting in the online
learning scenario. Whereas cost sensitivity in the batch setting
is achieved by different resampling mechanisms, in the online

3358

ensembles it is achieved by manipulating the parameters of
the Poisson distribution for different classes. In this section,
we define online extensions of all of the popular methods
described in the previous section. Note that the proposed
framework can also be similarly applied to other batch cost-
sensitive ensembles, such as RBBagging [22], CSRoulette [42],
RareBoost [25], or DataBoost-IM [20], and so on.

4.1 Online Cost-Sensitive Bagging

We begin with the derivation of online UnderOverBagging.
Noting that the Poisson distribution parameter A =1 corre-
sponds to sampling with probability &, we can simulate
sampling a given example with probability < by instead
presenting this example to the base model k ~ Poisson(C)
times and performing online bagging. This yields the simple
algorithm shown in Algorithm 12.

Algorithm 12. Online UnderOverBagging

Input: S: data set, M: number of base learners, C' > 1: sam-

pling rate

1: forn=1,...,Ndo

2: form=1,...,M do

3: a=1;

4: Ify,=1,A=aC,else \ = a
5: Let k ~ Poisson(\)

6: Do k times

Train the base learner h,, — Y using (x,, y,)
7: end for
8: end for
Output: H(z) = arg max,cy Zf\”[:l I(hy(x) =1v)

For the online version of SMOTEBagging, we propose a
similar generalization, shown in Algorithm 13, together with
the online version of the original SMOTE in Algorithm 14. Itis
worth noting that online SMOTE may not be a good approxi-
mation of its batch counterpart, since at the early stages of the
learning process, the positive examples are extremely rare,
and therefore the generated synthetic examples by online
SMOTE can be very different from the ones generated in the
batch setting. Nonetheless, we investigated it for complete-
ness, and the empirical results presented below show that it
works surprisingly well despite this intrinsic limitation.

4.2 Online Cost-Sensitive Boosting

As stated at the beginning of this section, the key step to

implement online boosting is to formulate the weight

update rule such that the normalization step can be

avoided, as we cannot track the normalization factor online.
To derive such weight update rule for the AdaC2 algo-

rithm, we reformulate step 6 of Algorithm 8 as

D7n+1(n)

o< Cn D (n)exp(—am (21 (hm (2n) = yn) — 1))

- Can() (20‘771 (hm(-'l;n) = yn))CXp(%n)
X Can()eXP(20{771](}7’771(1’71) = yn))

Cn Z” ICan(”) (hn (xn)#yn)

h =,

= Dm X ZI 1CﬂDm(n) (han () =1n) s im («Tn) Un

C”" hm() 7é Yn

G
N — . h _

2 Z:—l Cn Dy (W) I (A (220) =yn) m(Tn) = Yn
x D,, x = . . .

22 Cn D (hm('ﬁz)#y”) m(l'n) # Yn

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

Algorithm 13. Online SMOTEBagging

Input: S: data set, M: number of base learners, C' > 1: sam-

pling rate
1. Xt ={}
2: forn=1,...,Ndo
3: form=1,...,M do
4: a= '{}
5: if y, = 1 then
6: Xt ={X";z,},
7: A= aC,)\S)q,j()TE = (1 — a)C
8: Let k ~ Poisson()\)
9: Do k times
Train the base learner h,, — Y using
(mm yn)
10: Let ksyiore ~ POiSSOﬂ()\SAiOTE)
11: Do]fSM()TE times

zg = Online.SMOTE(X™)
Train the base learner h,,, — Y using (zg, y,)
12: else

13: Let k ~ Poisson(\)

14: Do k times
Train the base learner h,, — Y using
(xm yn)

15: end if

16: end for

17: end for

Output: H(z) = arg max,cy Z:rf:] I(hp(x) =y)

Algorithm 14. Online SMOTE

Input X: collection of positive samples
cx = X(end,:)
: Randomly choose one of the k nearest neighbors of z, 2’
: Calculate the difference between z and 2’
: Generate a random number y between 0 and 1
: Create a synthetic instance:
xs=x+yla —x)
Output: a synthetic instance zsy0re

Let werr, =" C,Dy(n)I(m(@n) #yn) be the
weighted error and wacc = Zn 1 Co Doy ()1 (R () = yn)

be the weighted accuracy. Then, we can reformulate the
weight update step (step 6) of AdaC2 as

C
R
m n n y" _ 0 (v\

Gk XN =

) 2wace,

Dm+l (TL) = Dm X

Cp

Yn = 17 2werr,
hm(xn) 7& yn{ Cx "
= 07 2werrm

One can check that it is equivalent to step 6 of Algorithm 8 but
without the normalization factor, and the sum of the weights
after the update is still one. Therefore, to implement online
AdaC2, we only need to track werr and wacc to update the Pois-
son parameter \ for each base learner. In particular, as AdaC2
treats differently true positive, true negative, false positive and
false negative examples, we need four parameters
WIP NIV NP NEN) to track the sum of weighted Poisson distri-
bution parameter X of each category of the examples for the mth
base model respectively Then werr and wacc can be calculated
by 2082 ang Mo A
total P01sson dlstrlbutlon parameter for the mth base learner.
The pseudo-code of online AdaC2 is shown in Algorithm 15.

respectively, where is the sum of

WANG AND PINEAU: ONLINE BAGGING AND BOOSTING FOR IMBALANCED DATA STREAMS

Algorithm 15. Online AdaC2

Input: S: data set, M: number of base learners, Cp: cost of false
negative, C'y: cost of false positive
1: Initialize AIF = 0, \IV = 0, \fF = 0, M/ = 0, \5VM =0 for

allme {1,..., M}

2: forn=1,...,Ndo
3: SetA=1
4: form=1,...,Mdo
. SUM _ \SUM
5' /\m - /\m + A
6: Let k ~ Poisson(\)
7 Do k times
8 Train the base learner h,, — Y using (z,, y»)
9: if by, (x,) = 1&&y, = 1 then
. TP TP
10)\m —)\'m Tj CTI;)H U
A APy
waccy, < "f\strm}” » WET Ty <— ";;{:a}n)
CP)\ m m
A 2wacen
11: else if h,,(x,) = 0&&y, = 0 then
. TN TN
12: A = A+ CNA,
TP | \TN FP 4 \FN
Wacty, < n;smfn y WETrTp, <— m)\SUM)
m ‘m
P
2wacc,
13: else if h,,(x,) = 0&&y, = 1 then
14: AN NEN 4 Cp,
AP \TN AP NEN
WACCy, — Zgf'= WETTm — ~aryf=,
A CpA
2werry,
15: else if h,,(x,) = 1&&y, = 0 then
. FP FP .
16.)\"L -)\m T}J!— c]’;\\')\7 FP FN
NN NN
Wace,, — e werr,, — g,
m ‘m
A CyA
2werry,
17: end if
18: end for
19: end for

Output: H(z) = arg max,cy Z;{Zl log (%)I(hm () =v)

By similar calculations, an update formula for CSB2
without normalization can be formulated as

hIIL(:I“’IL) = Yn —

(1—€m) (em+werr,)
Cp
Yn = 17 €em+werr,
hm(xn) # Yn —0 " Cy "
Yn =Y, emtwerry,

Dm+1(n) = Dm X

Then, the online CSB2 can be implemented by tracking the
weighted error and unweighted error, which is achieved by
tracking AP NN AW and ASUM respectively. The pseudo-
code of online CSB2 is shown in Algorithm 16.

Moving on to RUSBoost (Algorithm 10), we note that it is
the same as the standard boosting algorithm except that
there is a pre-processing step at the beginning of every itera-
tion to rebalance the example distribution. As a result, each
example should be reweighted according to different
undersampling strategies. In RUSBoostl, as all negative
examples are first undersampled at a rate of §-, the
expected total weights of the remaining examples are

D}, + ¥ D, where Dt = SN Dt (n) is the sum of the
weights of positive examples, and D, = S D~ (n) is the
sum of negative examples. Since the size of training exam-
ples is (C'+1)N* after undersampling, we set the new

weight of each example to:

3359
1 (C+1)NT g =1
, _ Df+Cp,, NT+N— "
D;,(n) = Dy (n) x ONt 1 (C+1)N* 0

7— Nt H— Nt = Yn
NT pr+Sp,, NTHN

To approximate these quantities in online RUSBoost1, we
need to record the total weights of positive examples and neg-
ative examples, as well as their counts. This can be done by
introducing four parameters: A’V \VEG 'n+ and n~. Here,
NT and N~ are approximated by n*, and n™. Since D,,(n) in
batch boosting (Algorithm 2) corresponds to the parameter A
in online boosting (Algorithm 4), D/ and D, can be tracked

AFOS \NEG . o
by - 5'0531 NG and 3 {Ps”i NG respectively. The derivation of
online RUSBoost2 follows a similar approach. In RUSBoost2,
the number of examples of each class is fixed regardless of the

total weight of each class. Therefore, the positive (negative)
examples will be undersampled if their total weight is greater

than 2= (;¥2-), and will be oversampled otherwise.
Therefore, each example is reweighted by
N /Dt =1
D)) = Do) x § T/ D 00
NJ;Jer /Dnm Yn = 0.

The implementation of online RUSBoost3 is straightfor-
ward, positive examples are generated as in standard online
boosting. For a negative example, let A5 = 2, and use this
example k ~ Poisson(\U%) times to update a base learner.
The pseudo-code of these three online RUSBoost algorithms
is included in Algorithm 17.

Algorithm 16. Online CSB2

Input: S: data set, M: number of base learners, Cp: cost of false
negative, C'y: cost of false positive
1: Initialize AP =0, NV = 0, X5 = 0, \5VM =0 for all m €

»'m 7t m

{1,..., M}
2: forn=1,...,Ndo
3: SetA=1
4: form=1,...,M do
5: /\SUM —)\SUM + by
6: Let k ~ Poisson()\)
7 Do k times
8 Train the base learner h,,, — Y using (z,, y,)
9 if h,, (z,) = y, then
ASW AFP_\FN
10: €m — 7)\?}?“1 , WeTrTy, «— ”’A;%;ﬂ;"
)\ - (1*5'771)(5Fr,:+we7‘rrn)
11: else
12: if hy,(z,) = 0&&y,, = 1 then
13: NN NN 4 CpA,)\;iw — /\;S,;W + A,
SW FP_ \FN
€m ﬁ,werwm — ";501\}71)
CpA
)\ - €m +£crrm,
14: else
15: NP NEP 4 CpA AV — XOW)
SW FP+)\FN
€m /\;S;E_]\[b WETT 77;5‘][»“;” 9’
CyA
)\ - em+{L\ver7'm
16: end if
17: end if
18: end for
19: end for

Output: H(z) = arg max,cy Z,‘n[:l log (M)I(hm(x) =)

€m

3360

Algorithm 17. Online RUSBoost

Input: S: data set, M: number of base learners, C' > 1: sampling rate
1: Initialize A5¢ = 0, A5V = 0, A0 = 0, A\NF¢ = 0, for all m €
{1,...,M},n" =0,n" =0
forn=1,...,Ndo
Set A =1
form=1,...,M do

2:
3
4
5: if y, = 1 then
6
7
8

NS NPOS X nt e nt 41,

m

else
: AVEG \NEG L X, n™ «—n~ +1,
9: end if
10: Compute M9 (step 21 - 23)
11: Let k ~ Poisson(\fU5)
12: Do k times
13: Train the base learner h,, — Y using (z,, y,)
14: if by, (2,) = y, then ar
15: /\;gnc —)x;ic + A €p — A?}LCZA;S,?V’ — 2(17Aem)
16: else ar
17:)\;S;y <—)\§;’L +)\,€m<—w,>\<—2;\m
18: end if e
19: end for
20: end for
M —€m —
Output: H(z) = argmax,cy »,,_ log (IET)I(hm(:r) =y)
online RUSBoost1 y .
S MNOSONEG (o 1)t o
RUS N)‘A{PSH;XEG@ <n+++3nn* v =1
21: Compute \"7”: NRUS \ _MDSNEG (gt _0
/\’;"\’QEG+/\£’1()5(§1’% nt4+n— n
online RUSBoost2
RUS + A0S _

22: Compute A\EUS: A -)\'n,*nJr'n,’ /W’ Yo =1

. p N)\RUS)\ Ccnt)\;\"EG _ 0

A / NOS ONEG s Yn
online RUSBoost3
MUS Xy, =1

. RUS. y Yn

23: Compute \"7°: {ARUS 2 =0

In online SMOTEBoost (Algorithm 18) we similarly keep
track of the number of positive and negative examples, n*,
and n~, a parameter X' controlling the re-use frequency of
each new sample during training, and an additional param-
eter *MOTE controlling the number of generated synthetic
positive examples. Three variants are proposed, as online
generalizations of the three cases in Algorithm 11. In online
SMOTEBoost1, the parameter)\ is analogous to A in stan-
dard online boosting, and synthetic examples are generated
by uniformly sampling from positive examples and apply-
ing an online version of SMOTE. In online SMOTEBoost2,
the derivation of X' is the same as A in online RUSBoost2.
Since SMOTE is applied after sampling the original dataset,
the probability of a positive example being chosen to gener-
ate synthetic examples is proportional to its weight. There-
fore, A\MOTE is given by X (CI\Al —1). Finally, online
SMOTEBoost3 is analogous to standard online boosting,
except for the additional parameter 3072 = \(C — 1).

4.3 A Unified Perspective

The proposed online cost-sensitive ensemble algorithms and
their batch mode counterparts can be characterized from the
perspective of data sampling, and the approach to dealing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

with the class imbalanced problem, as summarized in
Table 1. More specifically, in all batch learning algorithms,
data are sampled according to their weights (distribution),
while in online learning algorithms, each instance is sampled
from a Poisson distribution with parameter A. The key point
is that as the size of dataset approaches infinity, sampling
from a uniform is equivalent to sampling from a Poisson dis-
tribution with A = 1. Therefore, updating the weights in
batch algorithms can be approximated by properly updating
the Poisson parameter in online algorithms.

Algorithm 18. Online SMOTEBoost

Input: S: data set, M: number of base learners, C' > 1: sam-

pling rate

1: Initialize A\5¢ = 0, A3 =0, for all m € {1,..., M}, n* =0,

n”=0,X"={}

2: forn=1,...,N do

3: SetA=1

4: form=1,...,M do

5: if y, = 1 then

6: nt e nt 4+ 1, AP09 205 4

Xt ={X";2,}

7: else

8: N n 4+ 1, ANEG \VEG 4
9: end if

10: Compute X (step 26, 28, 30)
11: k ~ Poisson(\)
12: Do k times

13: Train the base learner h,, — Y using (z,, y,)
14: Compute N*MOTE (step 27,29, 31)
15: kSJ\[OTE ~ POiSSOTl(/\SA]OTE)
16: Do kSMOTE times
17: xg = online.SMOTE(X™)
18: Train the base learner h,, — Y using (zg, y,)
19: if by, (2,) = y, then)

) sC SC At A
20: A = A A e — SO A=t

m m SC 8] (I—€m)

21: else aw
2 A AT A e oy A g
23: end if e '
24: end for
25: end for

Output: f(x) = argmax,cy S0 log (52) I (i () = 1)

€m

online SMOTEBoost1
26: Compute X: X «— X
- NSMOTE _ n gy
. SMOTE. " y o YUn
27 Compute \SMOTE; { A\SMOTE E)’+ yn =0
online SMOTEBoost2
nt APOS _
28: Compute \: X AW/W’ Un=1
. p : N\ 1 / AVEG =0
W [NS NEG s Yn
.)\S]\[OTE P)\/(n__ 1) Yp = 1
29: Compute \MOTE, Cn* n o
P ASMOTE _ Yo =0
online SMOTEBoost3
30: Compute N: XN — X
SMOTE _ _
31: Compute ASMOTE; { iSMOTE : (()C DA, Zy/z - (1]

WANG AND PINEAU: ONLINE BAGGING AND BOOSTING FOR IMBALANCED DATA STREAMS

TABLE 1
A Unified Perspective of Cost-Sensitive Ensemble

Quantity used for data sampling

Weight D(n) Poisson parameter A
Batch Ensemble v x
Online Ensemble X v

Approaches to dealing with class imbalance problem

Different Undersampling Oversampling SMOTE

Costs
UnderOverBagging X v v X
SMOTEBagging x x v v
AdaC2 v X X X
CSB2 v X X X
RUSBoost X v X X
SMOTEBoost X X v v

To deal with the class imbalance problem, AdaC2 and
CSB2 impose different costs of misclassification on positive
and negative classes, and then minimize overall cost instead
of classification error. In such a way, examples from differ-
ent classes are given different weight update rules at each
boosting iteration. SMOTEBagging and SMOTEBoost add
an additional oversampling step over the positive class
based on SMOTE at each bagging/boosting iterations, while
RUSBoost undersamples the negative class before feeding
the examples to a base learner. Finally, UnderOverBagging
smoothly switches from undersampling over negative class
to oversampling positive class (without SMOTE) over the
iterations to rebalance the class distribution.

4.4 Computational Complexity

At each time step, sampling from a Poisson distribution and
updating the parameters (e.g., A) takes O(1). If we assume
that the complexity of updating a base learner and making a
prediction are O(£(d)) and O(g(d)) respectively, where d is
the feature dimension, then, the overall complexity of non-
SMOTE based online ensemble algorithms at each time step
with M base learners is O(M(c(d) + £(d))).® In other words,
compared with a single online base learner algorithm, the
complexity of ensemble approaches only increases linearly
with the number of base learners. Compared with online
cost-insensitive ensemble algorithms, there is almost no
extra cost to pay, since the cost of extra parameter update
steps is negligible. For SMOTE-based online ensemble algo-
rithms, the online SMOTE algorithm takes O(kdn™) to gener-
ate k synthetic examples, where n™ is the number of positive
examples stored in memory by the time step n. In addition, it
also requires O(dn™) to store these positive examples. Since
the complexity grows linearly with n*, and in the cost-sensi-
tive learning setting, the positive examples are usually rare,
the overall complexity is still tractable. Even though n*
might be large in some applications, we can always control
the complexity by only maintaining 7 (7 < n') positive
examples in the online learning scenario (e.g., dropping old
ones and keeping only the 7 most recent positive examples).

5 THEORETICAL ANALYSIS

The asymptotic properties of online bagging and boosting
have been studied in [37], showing consistency between the
online approaches and the original bagging and boosting. We
now extend the analysis for the cost-sensitive case, to show

6. Mostly, updating an algorithm £ times can be accomplished by
updating it once with a weight .

3361

that online UnderOverBagging, AdaC2, CSB2 and RUSBoost
converge to the same solution as their batch counterparts
under similar conditions as in [36], [37]. We note that online
SMOTEBagging and online SMOTEBoost cannot be shown to
converge to their batch mode counterparts since there is no
guarantee that online SMOTE will converge to batch SMOTE.

Since our theoretical analysis follows quite readily from
the work by [37], we give here only the statements of the
main theorems. The proofs are available in the supplemen-
tary materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2016.2609424.

Theorem 1. As N* — 0o, N~ — oo and M — oo, if the base
learning algorithms are proportional,” and converge in proba-
bility to some classifier, online UnderOverBagging converges
to its batch mode counterpart.

Theorem 2. As N* — oo and N~ — oo, if the base learners are
naive Bayes classifiers, online AdaC2, CSB2 and RUSBoost
algorithms converge to their batch mode counterparts.

6 EXPERIMENTS

In this section, the proposed online learning algorithms are
compared with their batch counterparts using benchmark
datasets. As the data distributions are highly imbalanced,
the performance of each algorithm is measured by its AUC
value (computed using five-fold cross-validation), a widely
used metric for imbalanced data distribution, rather than
classification accuracy. Since the performances of different
batch ensemble algorithms have been thoroughly com-
pared [18], [26], [41], [43], this paper mainly focuses on the
performances of online algorithms, and the comparison
between the two different types of learning scenarios. We
aim to answer the following questions:

1. Which online cost-sensitive ensemble method
achieves the best performance?

2. For each online cost-sensitive ensemble algorithm,
how close is the performance of the online variant to
its batch counterpart?

3. How does the choice of base learners affect the per-
formance and convergence of the online ensemble
algorithms?

4. Though the asymptotic properties of some online
ensemble algorithms are guaranteed, what can we
observe empirically about the convergence speed for
the batch versus online algorithms?

6.1 Data Sets and Experimental Setup

Eighteen datasets from the UCI repository® with different
class ratios were selected to compare the performances of
batch and online ensemble learning algorithms. Multiclass
datasets were converted to binary class datasets by selecting
one class to be the positive and the rest of the classes to be
the negative. The detailed description of the datasets can
found be in KEEL and UCI dataset websites. Table 2 sum-
marizes the characteristics of the datasets, including the
number of examples (#ex), number of features (#fea), the

7. For the detailed definition of proportional and other related defi-
nitions, we refer the reader to [37].

8. Downloaded from KEEL website: http:/ /sci2s.ugr.es/keel/data-
sets.php

3362
TABLE 2
Summary of Datasets Used in Experiments
dataset #ex #fea %pos %neg %neg/ %pos
Sonar 208 60 46.63 53.37 1.14
Glassl 214 9 35.51 64.49 1.82
Pima 768 8 34.84 66.16 1.90
IrisO 150 4 33.33 66.67 2.00
Glass0 214 9 32.71 67.29 2.06
Ecolil 336 7 22.92 77.08 3.36
Ecoli2 336 7 15.48 84.52 5.46
Segment0 2,308 19 14.26 85.74 6.01
Glass6 214 9 13.55 86.45 6.38
Yeast3 1,484 8 10.98 89.02 8.11
Ecoli3 336 7 10.88 89.12 8.19
Satimage 6,435 36 9.73 90.27 9.28
Led7digit 443 7 8.35 91.65 10.97
Ecoli4 336 7 6.74 93.26 13.84
Glass4 214 9 6.07 93.93 15.47
Glassb 214 9 4.20 95.80 22.81
Yeast5 1,484 8 2.96 97.04 32.78
Yeast6 1,484 8 2.49 97.51 39.15
TABLE 3
Parameter Setting
Algorithms Parameters
ALL Number of base learners M = 10
SMOTE Number of neighbors k£ = 5
Distance = Euclidian distance
AC2,CSB2 Cp=1
CN =0.1to1
UOB, SB,RUS3,5BO3 C = 1 to original class ratio
RUS1,RUS2,5BO1,SBO2 C = original class ratio to 1

percentage of positive and negative examples (%pos; %neg),
and the class ratio (%neg/%pos).

As the purpose of the experiments is to make fair com-
parisons between the proposed online algorithms and their
batch mode counterparts, the effects of base learners should
be reduced to a minimum. In other words, given the same
training set, the difference between batch and online algo-
rithms should be due to the inconsistency between ensem-
bles themselves, rather than the base learners. In the
theoretical analysis, this requirement is formulated as the
proportional property, which requires that given the same
replicas or proportion of training examples, the base learn-
ers returned by batch and online learning algorithms should
be the same. From a practical perspective, it is desirable to
have base learners that are easy to implement and for which
the computation cost of an update step is low. Based on
these considerations, three classifiers are considered in the
experiments: linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and naive Bayes (NB).

There are a few hyper-parameters to specify. We use ten
base learners per ensemble throughout our experiments, as
suggested in [18]. Other parameters specific to each
approach are summarized in Table 3, where UOB, SB, AC2
are the abbreviations of UnderOverBagging, SMOTEBag-
ging, AdaC2; RUS1—RUS3 and SBO1—SBO3 are the three
variants of RUSBoost and SMOTEBoost respectively.

6.2 Results
First, we show in Fig. 1 the overall performance (average
AUC with standard deviation) for each algorithm and each

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

-batch Donline

0.9]1
0 0.85]

UOB SB AC2 CSB2RUS1 RUS2 RUS3 SBO1SB0O2SBO3 Mean

UOB SB AC2 CSB2RUS1RUS2RUS3SBO1SB02SBO3 Mean

UOB SB AC2 CSB2RUS1 RUS2 RUS3 SBO1SB0O2SBO3 Mean

Overall

UOB SB AC2 CSB2RUS1RUS2RUS3SBO1SB02SBO3 Mean

Fig. 1. Overall performances in terms of AUC with standard deviation.

o Ellvos [—JRus2
2o0ss| EEMsB.... CJRUS3...........
B Ac2 [sBo1
02| - [Z=JcsB2.. HEESBO2| |
[—JRust Bl sB03

Online Ensembles

Batch Ensembles

Batch Ensembles Online Ensembles

Fig. 2. Overall AUC and rank of batch and online learning algorithms.

base learner. The detailed results are presented in the sup-
plementary materials, available online. Roughly speaking,
bagging algorithms achieve better performance than boost-
ing algorithms in terms of consistency. Bagging algorithms,
AdaC2, and CSB2 perform better than the RUSBoost and
SMOTEBoost algorithms in terms of AUC in both batch and
online modes.

6.2.1 Online Learning Performance

The overall AUC and rank of batch and online learning
algorithms are grouped and shown in Fig. 2. From the left-
hand side of the figure, it can be observed that batch bag-
ging algorithms, AdaC2, and CSB2 perform better than the
RUSBoost and SMOTEBoost algorithms, though perhaps
not significantly in terms of AUC values. However, the dif-
ference between them is enhanced in the online learning
scenario, as shown in the right-hand side of Fig. 2. There-
fore, we attribute the better performances of oUOB,’ 0SB,
0AC2, and oCSB2 to two reasons: 1. the performances of
their batch mode counterparts; and 2. the consistency the
online learning algorithms, as further investigated in the
next section.

9. Hereafter, we use b- and o- as the abbreviations of batch and online.
(e.g., oUOB is the abbreviation of online UnderOverBagging algorithm.)

WANG AND PINEAU: ONLINE BAGGING AND BOOSTING FOR IMBALANCED DATA STREAMS

0
UOB SB AC2 CSB2RUS1RUS2RUS3SBO1SB0O2SBO3

0
UOB SB AC2 CSB2RUS1RUS2RUS3SBO1SB0O2SBO3 Mean

0
UOB SB AC2 CSB2RUS1RUS2RUS3 SBO1SB0O2SBO3 Mean

UOB SB AC2 CSB2RUS1RUS2RUS3SBO1SB0O2SBO3

Mean

Fig. 3. Bar-plot of the absolute difference of AUC between batch and
online ensemble algorithms.

6.2.2 Consistency Between Batch and Online
Algorithms

Fig. 3 shows the bar-plot of absolute difference (with standard
deviation) of AUC between batch and online ensemble algo-
rithms for each algorithm and each base learner. We observe
that bagging algorithms have much better consistency than

UOB for satimage SB for satimage

3363

boosting algorithms across all base learners. o AC2 and oCSB2
also achieve better consistency than RUSBoost and SMOTE-
Boost algorithms, though not so significantly as oUOB and
0SB. We also observe that oRUS1 demonstrates the worst con-
sistency among all algorithms, which explains the poor online
learning performances shown in Fig. 2.

Fig. 4 presents the full ROCs of different algorithms with
different base learners for a particular dataset (satimage).
Here we observe that the ROCs of oUOB and 0SB are much
closer to their batch counterparts than to any other algo-
rithm. The ROCs of batch and online bagging algorithms
are almost overlapped. 0AC2 and oCSB2 achieve compara-
ble consistency, as their ROCs of batch and online mode are
very close to each other. Overall, while differences between
the performances of batch ensembles are not so significant,
the performances of the online algorithms are largely deter-
mined by the consistency with their batch counterparts.

6.2.3 The Effect of Base Learners

From Figs. 1 and 3, we observe that LDA and QDA lead to
slightly better performance in terms of average AUC than
NB, yet NB has slightly better consistency. Nonetheless, we
see that oUOB and oSB perform consistently well for all
base learners, while oRUS1 is consistently worse across all
base learners. Therefore, there is no strong evidence that the
choice of base learner significantly affects the consistency of
the online ensemble algorithms.

AC2 for satimage CSB2 for satimage

1 1 -
— e N ™ L ey
A - - =
a *

0.8 0.3 03 o 0.8 ¥
o Q o /4 . o
s K s ~2 k4
T < < o
06 06 06 206
2 ——batch LDA £ ——batch LDA 2 —e—batch LDA = i —e—batch LDA
3 —+—batch GDA 3 —+—batch GDA 3 —+—batch QDA 3 o ——batch QDA
2 04 —~=—batch NB 204 —~=-batch NB % 04 =~ batch NB % 04 Y =~ batch NB
] - online LDA 3 - online LDA 3 - online LDA K 7 - online LDA
= -4~ online QDA = -4 online QDA = &= online QDA = -4~ online QDA

0.2 -5 online NB 0.2 -5 online NB 0.2 -5~ online NB 0.2 -5~ online NB

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.8 1 0.2 0.8 1
False Positive Rate False Positive Rate

RUS1 for satimage

RUS2 for satimage

0.4 0.6 0.4 0.6
False Positive Rate False Positive Rate

RUS3 for satimage

1
0.8 0.8
Q Q
I 2
© ©
o o
206 2 06
= —e—batch LDA £
3 L —&—batch QDA 3
04 ot =~ batch NB %04
2 -o- online LDA 3
= -4 online QDA L
0.2 -5 online NB 0.2

L 0.8
P 2
©
o
206
—e—batch LDA = —e—batch LDA
—+—batch QDA 3 —+—batch QDA
—=—batch NB 04 —=—batch NB
-o-online LDA 2 -o-online LDA
- online QDA L -~ online QDA
-=- online NB 0.2 -=- online NB

0 0.2 0.8 1 0 0.2

0.4 0.6
False Positive Rate

SBO1 for satimage

0.4 0.6
False Positive Rate

0.8 1 0 0.2 0.8 1

0.4 0.6
False Positive Rate

SBO2 for satimage SBO3 for satimage
1 1 1
0.8 0.8 0.8
2 2 s 2
T T - ®
o o -4
206 206 206
= —e—batch LDA = —e—batch LDA = —e—batch LDA
3 —&-batch QDA 8 —&—batch QDA 3 —&—batch QDA
o4 —=-batch NB % 04 ~=—batch NB L o4 ~=—batch NB
H] -o- online LDA E] -o- online LDA E] -o- online LDA
= -4~ online QDA = -4~ online QDA = -4~ online QDA
0.2 -=- online NB 0.2 -- online NB 0.2 -5- online NB
0 0.2 0.4 0.6 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1
False Positive Rate

0.4 0.6
False Positive Rate

0.4 0.6
False Positive Rate

Fig. 4. ROCs of different algorithms with different base learners for the satimage data set.

3364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016
AUC curve for satimage data set using LDA AUC curve for satimage data set using QDA AUC curve for satimage data set using NB
09 0.9
0.85 0.85]
0.8 0.8
0.75 0.75]
o 07 o 07
=} =}
< 65 ——bUOB < 065 < 065 ——bUOB
/ -«-oUOB I -~-0UOB -~-0UOB
0.6 | ——bAC2 0.6 g ——bAC2 0.6 ——bAC2
- -0AC2 1y - -0AC2 - -0AC2
0.55 —-—DbRUS3 0557 4 —-—DbRUS3 0.55 —-— bRUS3
0.5 -= -oRUS3 0.5} i -= -oRUS3 0.5 -= -oRUS3
045, 40 00 %% 00 %% 100

20 60 80
Percentage of training examples (%)

20 60 80
Percentage of training examples (%)

60 80
Percentage of training examples (%)

Fig. 5. Learning curves with different base learners for the satimage data set.

6.2.4 Convergence Speed of the Algorithms

The last question is the convergence speed of the proposed
algorithms. Because of the better performances of oUOB,
0SB, 0AC2, and oCSB2 in terms of both consistency and
AUC, as well as the similarity between oUOB and 0SB,
0AC2 and 0CSB2, we only include oUOB and 0AC2 in these
results. We also include oRUS3 for comparison purposes.
We vary the number of examples of the satimage data set
from 5 to 90 percent used as the training set, and the rest are
used as the testing set. The experiment for each algorithm is
repeated five times, and the average AUCs (with standard
deviation) are shown in Fig. 5. We observe that oUOB con-
verges to bUOB even with a very small amount of training
examples. Across all methods, performance improves grad-
ually with addition of more examples, and throughout the
range considered, the performance of each online ensemble
learner is close to that of its batch counterpart.

6.3 Comparison with State-of-the-Art Algorithms

In this section, we select two representative algorithms,
oUOB and 0AC2, and compare them with two recently pro-
posed cost-sensitive online learning algorithms (CSOGD-I
and CSOGD-II) [47]. For comparison purposes, we follow
the same experimental settings and use misclassification
cost as a performance metric as in [47], defined as

cost = a,, X N, + o, X Ny,

where o), +a, =1 and 0 < «p, o, <1 are the misclassifica-
tion cost parameters for positive and negative classes respec-
tively, and I, N, are the numbers of false negatives and

10 Bl Perceptron [_JoUOB-PER
Il oBag-PER []oAC2-PER

[oBoost-PER [Jilll] oUOB-NB

8 [CJcsoGD-I loAC2-NB

[——JcsoGb-Ii

Misclassification Cost (per 100 examples)

0
Normalized

Unnormalized

Fig. 6. Average misclassification costs of different algorithms on UCI
datasets.

false positives respectively. It is worth noting that CSOGD-I
and CSOGD-II are restricted to using perceptron learning,
thus this is what we use also as the base learner (0(UOB-PER,
0AC2-PER). In addition, we also consider NB as the base
learner (0OUOB-NB, 0AC2-NB). To demonstrate the effective-
ness of the cost-sensitive algorithms, the performances of a
perceptron classifier, as well as standard online bagging and
boosting with perceptron as the base learner (oBag-PER and
o0Boost-PER) are presented as baselines.

Fig. 6 shows the average costs of different algorithms on
18 UCI datasets, where we have considered two scenarios:
with and without normalization as a pre-processing step of
learning process. We observe that in both scenarios, the costs
of cost-sensitive ensembles are lower than that of cost-insen-
sitive ones. In addition, cost-sensitive ensembles with NB as
the base learner outperforms the other algorithms, and
CSOGD-II performs slightly better than oAC2-PER. On the
other hand, CSOGD-I completely fails without normaliza-
tion as a pre-processing step. However, in the context of
online learning, it is usually unrealistic to perform normali-
zation before the entire learning process, since we usually do
not have prior knowledge of the data (e.g., mean, variance).

We also conduct experiments on the larger scale datasets
as in [47], and the results are summarized in Table 4. Simi-
larly, the cost-sensitive ensemble learning algorithms and
CSOGD-II are insensitive to the normalization of datasets,
while CSOGD-I fails on unnormalized datasets. Further-
more, in both scenarios, all the cost-sensitive ensemble
learning algorithms outperform CSOGD-I; oUOB-PER and
0AC2-NB outperform both CSOGD algorithms. Overall, the
cost-sensitive ensemble approaches are insensitive to the
scaling of the data and achieve better performance than lin-
ear CSOGD algorithms.

7 CONCLUSIONS

The paper generalizes a number of batch cost-sensitive
ensemble learning algorithms to the online setting, includ-
ing new online extensions of UnderOverBagging, SMOTE-
Bagging, AdaC2, CSB2, RUSBoost, and SMOTEBoost. We
discuss the properties necessary for theoretical convergence
of the online variants to the original batch version. We pro-
vide extensive experimental results analyzing the perfor-
mance of the proposed algorithms.

The performances of the online ensembles depend not
only on that of their batch counterparts, but also on their con-
sistency. As the batch learning algorithms perform relatively
similarly to each other, the online learning performances are
greatly affected by consistency. Some previous studies [11],

WANG AND PINEAU: ONLINE BAGGING AND BOOSTING FOR IMBALANCED DATA STREAMS 3365
TABLE 4
Performance Comparison with CSOGD Algorithms on Larger Scale Datasets
Dataset cost (per 100 samples) on different datasets (without normalization)
Perceptron oBag-PER oBoost-PER CSOGD-1I CSOGD-II oUOB-PER 0AC2-PER oUOB-NB 0AC2-NB
covtype 23.498 £0.031 22.783 £ 0.031 23.323 4 0.028 23.503 4= 0.034 4.793 £ 0.005 2.580 4 0.002 2.562 £ 0.001 4.139 +0.313 2.714 4 0.227
spambase 12.770 £ 0.560 16.087 +0.341 11.577 4 0.301 12.823 £ 0.532 3.730 £ 0.228 3.045 £0.017 3.044 £0.011 2.974 4+0.140 2.897 +0.174
german 19.324 £ 0.587 18.645 £ 0.623 16.995 4 0.617 19.318 4 0.508 6.046 £ 0.233 3.733 0.140 3.619 £ 0.076 7.978 2.112 5.030 & 1.356
svmguide3 15.879 £ 0.531 11.925 +0.189 11.943 4 0.246 19.081 £ 0.581 5.116 £ 0.260 3.876 £ 0.061 3.912 £ 0.064 12.184 +0.713 4.925 + 1.304
a% 10.454 £0.075 8.551 £0.058 9.539 £0.051 5.108 £0.038 3.417 £0.040 2.447 4 0.023 3.797 £ 0.008 5.088 +0.713 3.946 4 0.189
w8a 1.337 £0.011 1.254 £0.023 2.968 +£0.324 1.077+0.016 1.053 £0.015 0.958 £0.012 2.863 £0.208 1.037 £0.011 1.782 +0.160
Average 13.877 13.208 12.724 13.485 4.026 2.773 3.299 5.566 3.549
Dataset cost (per 100 samples) on different datasets (with normalization)
Perceptron oBag-PER oBoost-PER CSOGD-I CSOGD-II oUOB-PER 0AC2-PER oUOB-NB 0AC2-NB
covtype 16.275£0.026 13.234 £ 0.021 14.16540.018 6.118 £0.014 2.539 £ 0.005 2.532 4 0.005 2.535 £ 0.003 4.274 +0.171 2.886 4 0.390
spambase 5.1224+0.127 4.752 £0.096 4.365+£0.134 3.560 £0.105 1.874£0.079 1.84140.093 1.959 £0.104 3.1224+0.179 2.645 4 0.204
german 11.418 £ 0.631 9.723 +£0.592 10.792 £ 0.785 7.731 £0.351 8.475 £0.464 7.272 4+ 0.317 8.816 £0.508 7.231 £1.208 4.210 4 0.478
svmguide3 10.021 £0.272 9.672 £0.365 9.491 £0.524 9.294+£0.340 7.524 £0.487 7.323 +0.376 8.123 £ 0.410 8.864 +0.619 4.184 4 0.186
a% 8.16740.052 7.782£0.054 8.294+£0.098 3.544£0.034 2.836 £0.035 2.44240.019 2.914 £ 0.046 4.843 +0.349 3.862 4 0.059
w8a 1.346 £0.019 1.176£0.023 1.67240.078 1.05340.015 1.008 £ 0.013 1.030 +0.016 1.582+0.062 0.921 £0.020 1.222 +0.262
Average 8.724 7.7232 8.130 5.217 4.043 3.740 4.322 4.876 3.168

[14], [18], [26] have shown that simpler techniques, such as
bagging algorithms and undersampling techniques, often
perform better than more complex ones. In the context of
online learning, we emphasize that in terms of consistency, it
is how we construct the ensembles (bagging or boosting),
rather than how we sample the data (undersampling or over-
sampling/SMOTE) that matters. Therefore, it is not surpris-
ing that online bagging based algorithms are superior to
most boosting algorithms since they have much better con-
sistency. In addition, online UnderOverBagging also outper-
forms recent state-of-art online cost-sensitive learning
algorithms [47] in terms of misclassification cost. AdaC2 and
CSB2 also achieve comparable performance, even though
bagging algorithms show more consistency. This is mainly
because of the good performances of their batch counter-
parts. The RUSBoost and SMOTEBoost algorithms have rela-
tively worse performances mainly because of their inferior
consistency due to the less reliable approximation of the
weight update formula, and the higher chance of violating
the requirements of boosting.

Even though online SMOTE performs well with SMOTE-
Bagging, it might still be problematic due to the intrinsic
limitation discussed in Section 4.1. One option to sidestep
this issue would be to generate synthetic positive examples
by Gaussian noise instead of by SMOTE [31]. On the other
hand, in some scenarios, we may gather a number of posi-
tive examples before the learning process, and therefore the
problem of insufficient positive examples can be mitigated.
For example, for the task of seizure detection, before train-
ing a system for a new patient using an online learning algo-
rithm, we may already have a number of annotated seizures
from a library of previous patients.

An interesting direction for future work is to extend our
framework to handle non-stationary distributions [35]. Such
behavior often arises in online data, due to subtle (or in some
case sudden) changes in the underlying data generation pro-
cess. One of the challenges that arises is to incorporate a mech-
anism for forgetting old data. Another similar scenario is to
process incoming data in mini-batches (chunks) [9], [23],
assuming that data distribution is stationary within each
chunk, but may evolve over chunks. One common approach

used in this context is to maintain all hypotheses over all
chunks and make the prediction on the current chunk based
on weighted voting of the hypotheses [46]. In addition, in the
case of non-stationary data, it is also less obvious what to use
as a reference performance: comparison to the batch is not as
pertinent. The notion of regret has been used in the online
learning literature to characterize performance in this
case [52]. Extending the learning objective of our suite of algo-
rithms to this criterion is an interesting challenge.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC), Discovery grants program, and the Cana-
dian Institutes for Health Research (CIHR).

REFERENCES

[1] A.Beygelzimer, S. Kale, and H. Luo, “Optimal and adaptive algo-
rithms for online boosting,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2323-2331.

C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Germany: Springer, 2006.

P. Branco, L. Torgo, and R. Ribeiro, “A survey of predictive
modelling under imbalanced distributions,” arXiv:1505.01658,
2015.

L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123-140, 1996.

G. Cauwenberghs and T. Poggio, “Incremental and decremental
support vector machine learning,” Advances Neural Inform. Process.
Syst., vol. 13. pp. 409-415, 2001.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif.
Intell. Res., vol. 16, no. 1, pp. 321-357, 2002.

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBoost: Improving prediction of the minority class in
boosting,” in Proc. Eur. Conf. Principles Practice Knowl. Discovery
Databases, 2003, pp. 107-119.

S.-T. Chen, H.-T. Lin, and C.-J. Lu, “An online boosting algorithm
with theoretical justifications,” in Proc. Int. Conf. Mach. Learn.,
2012, pp. 1007-1014.

S. Chen and H. He, “Nonstationary stream data learning with
imbalanced class distribution,” Imbalanced Learning: Foundations,
Algorithms, and Applications. Hoboken, NJ, USA: Wiley, pp. 151-
186, 2013.

[2]
[3]

[4]
[5]

[6]

[71

[8]

1

3366

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.12, DECEMBER 2016

D. A. Cieslak, N. V. Chawla, and A. Striegel, “Combating imbal-
ance in network intrusion datasets,” in Proc. IEEE Int. Conf. Granu-
lar Comput., 2006, pp. 732-737.

A. Dal Pozzolo, O. Caelen, and G. Bontempi, “When is undersam-
pling effective in unbalanced classification tasks?” in Machine
Learning and Knowledge Discovery in Databases. Berlin, Germany:
Springer, 2015, pp. 200-215.

M. Denil, D. Matheson, and N. de Freitas, “Consistency of online
random forests,” Proc. Int. Conf. Mach. Learn., 2013, pp. 1256-1264.

C. Drummond and R. C. Holte, “Exploiting the cost (in)sensitivity
of decision tree splitting criteria,” in Proc. Int. Conf. Mach. Learn.,
2000, pp. 239-246.

C. Drummond and R. C. Holte, “C4.5, class imbalance, and cost
sensitivity: Why under-sampling beats over-sampling,” in Proc.
Workshop Learn. Imbalanced Datasets 11, 2003, pp. 1-8.

C. Elkan, “The foundations of cost-sensitive learning,” in Proc. Int.
Joint Conf. Artif. Intell., 2001, pp. 973-978.

T. Fawcett, “In Vivo’ spam filtering: A challenge problem for
KDD,” ACM SIGKDD Explorations Newsletter, vol. 5, no. 2,
pp. 140-148, 2003.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” |. Comput.
Syst. Sci., vol. 55, pp. 119-139, 1997.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Her-
rera, “A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches,” IEEE Trans.
Syst. Man Cybern. Part C: Appl. Rev., vol. 42, no. 4, pp. 463-484,
Jul.2012.

J. Gotman, “Automatic seizure detection: Improvements and eval-
uation,” Electroencephalography Clinical Neurophysiology, vol. 76,
no. 4, pp. 317-324, 1990.

H. Guo and H. L. Viktor, “Learning from imbalanced data sets with
boosting and data generation: The DataBoost-IM approach,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 30-39, 2004.

H. He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.

S. Hido, H. Kashima, and Y. Takahashi, “Roughly balanced bag-
ging for imbalanced data,” Statistical Anal. Data Mining, vol. 2,
no. 5-6, pp. 412426, 2009.

T.R. Hoens, R. Polikar, and N. V. Chawla, “Learning from stream-
ing data with concept drift and imbalance: An overview,” Progress
Artif. Intell., vol. 1, no. 1, pp. 89-101, 2012.

S. C. Hoi, R. Jin, P. Zhao, and T. Yang, “Online multiple kernel
classification,” Mach. Learn., vol. 90, no. 2, pp. 289-316, 2013.

M. V. Joshi, V. Kumar, and R. C. Agarwal, “Evaluating boosting
algorithms to classify rare classes: Comparison and
improvements,” in Proc. Int. Conf. Data Mining, 2001, pp. 257-264.

T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Comparing
boosting and bagging techniques with noisy and imbalanced
data,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans, vol. 41,
no. 3, pp. 552-568, May 2011.

T.-K. Kim, S-F. Wong, B. Stenger,]J. Kittler, and R. Cipolla,
“Incremental linear discriminant analysis using sufficient span-
ning set approximations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2007, pp. 1-8.

J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning
with kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165—
2176, Aug. 2004.

J. Langford, L. Li, and T. Zhang, “Sparse online learning via trun-
cated gradient,” J. Mach. Learn. Res., vol. 10, pp. 777-801, 2009.

P. Laskov, C. Gehl, S. Kriiger, and K.-R. Miiller, “Incremental sup-
port vector learning: Analysis, implementation and applications,”
J. Mach. Learn. Res., vol. 7, pp. 1909-1936, 2006.

S.S. Lee, “Noisy replication in skewed binary classification,” Com-
put. Statist. Data Anal., vol. 34, no. 2, pp. 165-191, 2000.

Y. Lin, Y. Lee, and G. Wahba, “Support vector machines for classi-
fication in nonstandard situations,” Mach. Learn., vol. 46, no. 1-3,
pp- 191-202, 2002.

L.-P. Liu, Y. Jiang, and Z.-H. Zhou, “Least square incremental lin-
ear discriminant analysis,” in Proc. Int. Conf. Data Mining, 2009,
pp- 298-306.

H. Masnadi-Shirazi and N. Vasconcelos, “Risk minimization,
probability elicitation, and cost-sensitive SVMs,” in Proc. Int. Conf.
Mach. Learn., 2010, pp. 759-766.

L. L. Minku, A. P. White, and X. Yao, “The impact of diversity on
online ensemble learning in the presence of concept drift,” IEEE
Trans. Knowl. Data Eng., vol. 22, no. 5, pp. 730-742, May 2010.

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

N. C. Oza and S. Russell, “Online bagging and boosting,” in Proc.
Artif. Intell. Statist., 2005, pp. 105-112,.

N. C. Oza, “Online ensemble learning,” Ph.D. dissertation, Com-
put. Sci. Division, Univ. California, Berkeley, 2001.

Y. Park, L. Luo, K. K. Parhi, and T. Netoff, “Seizure prediction
with spectral power of EEG using cost-sensitive support vector
machines,” Epilepsia, vol. 52, no. 10, pp. 1761-1770, 2011.

R. Polikar, “Ensemble based systems in decision making,” IEEE
Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, Jul.-Sep. 2006.

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-
line random forests,” in Proc. Online Learn. Comput. Vis. Workshop,
2009, pp. 1393-1400.

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“RUSBoost: A hybrid approach to alleviating class imbalance,”
IEEE Trans. Syst., Man Cybern., Part A: Syst. Humans, vol. 40, no. 1,
pp- 185-197, Jan. 2010.

V. S. Sheng and C. X. Ling, “Roulette sampling for cost-sensitive
learning,” in Proc. Eur. Conf. Mach. Learn., 2007, pp. 724-731.

Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive
boosting for classification of imbalanced data,” Pattern Recognit.,
vol. 40, no. 12, pp. 3358-3378, 2007.

K. M. Ting, “A comparative study of cost-sensitive boosting algo-
rithms,” in Proc. Int. Conf. Mach. Learn., 2000, pp. 983-990.

P. E. Utgoff, N. C. Berkman, and J. A. Clouse, “Decision tree
induction based on efficient tree restructuring,” Mach. Learn.,
vol. 29, no. 1, pp. 5-44, 1997.

H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting
data streams using ensemble classifiers,” in Proc. 9th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2003, pp. 226—
235.

J. Wang, P. Zhao, and S. C. Hoi, “Cost-sensitive online classi-
fication,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10, pp. 2425-
2438, Oct. 2014.

S. Wang and X. Yao, “Diversity analysis on imbalanced data sets
by using ensemble models,” in Proc. IEEE Symp. Comput. Intell.
Data Mining, 2009, pp. 324-331.

G. Wu and E. Y. Chang, “Adaptive feature-space conformal trans-
formation for imbalanced-data learning,” in Proc. Int. Conf. Mach.
Learn., 2003, pp. 816-823.

B. Zadrozny and C. Elkan, “Learning and making decisions when
costs and probabilities are both unknown,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2001, pp. 204-213.

P. Zhao, R. Jin, T. Yang, and S. C. Hoi, “Online AUC maxi-
mization,” in Proc. Int. Conf. Mach. Learn., 2011, pp. 233-240.

M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in Proc. Int. Conf. Mach. Learn.,
2003, pp. 928-936.

Boyu Wang received the BEng degree in elec-
tronic information engineering from Tianjin Univer-
sity, Tianjin, China, and the MSc degree in
electrical and computer engineering from the Uni-
versity of Macau, Macau, China. He is currently a
PhD student in the School of Computer Science,
McGill University, Montreal, QC, Canada. His
research interests include machine learning, brain
signal analysis, and reinforcement learning.

Joelle Pineau received the BASc degree from
the University of Waterloo, Canada, in 1998, and
the PhD degree from Carnegie Mellon University,
Pittsburgh, Pennsylvania, in 2004. She is a Wil-
liam Dawson Scholar and associate professor in
the School of Computer Science, McGill Univer-
sity, Montreal, Canada. She is also a senior fellow
of the Canadian Institute for Advanced Research
(CIFAR). Her research focuses on developing
models and algorithms for learning and decision-
making in partially observable stochastic
domains, and applying these results to complex
problems in robotics and healthcare.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

