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Abstract— In recent years, various background subtraction
methods have been proposed and used in vision systems for
moving object detection and tracking from moving cameras;
however, most of them have difficulty in handling small and
distant objects in complicated non-flat scenes. This paper
presents a robust method to effectively segment moving objects
from videos, captured by a camera on a moving platform. In
our approach, a two-level registration is applied to estimate
the effect of camera motion for motion compensation. After
motion estimation and extraction of potential foreground pixels
by Gaussian mixture model, noisy result is refined using
component based and pixel based methods the latter of which
uses the hidden markov model (HMM) for classifying pixels.
Finally, foreground objects are tracked by a particle filter
to exploit the temporal coherence of foreground motion and
improve the detection accuracy through time. Experimental
results show that our method outperforms competing methods
for detecting moving objects in complex environments.

I. INTRODUCTION

Detecting and tracking objects are very important topics of
research in surveillance and monitoring applications. Many
methods have been proposed for moving object detection
with a stationary camera (e.g. [1], [2], [3], [4]). These
methods are stable and real-time for indoor and outdoor
applications; however, they cannot detect a moving object
while the camera moves. Nowadays, a camera on a moving
platform is pervasive, especially in robotics applications in
which a mobile robot is required to detect moving objects
while in motion. Therefore, more and more researchers are
working on detecting and tracking objects using moving
cameras. Existing methods have other applications in dif-
ferent domains such aerial surveillance, video segmentation,
smart cars and driver assistance.

In this paper, we introduce a robust method to extract and
track moving objects from a non-stationary platform. The
main contributions of this paper are that we (a) estimate a
motion model using wavelet transform to update the GMM
background model (b) provide a learning framework based
on HMM that classifies foreground and background pixels
by integrating previous of pixel labels, and (c) propose to
use a particle filter as the backend of the detection algorithm
to track the foreground pixels.

The remainder of this paper is organized as follows. In
Section II, we discuss related works to extract moving objects
from a moving camera. In Section III, we introduce an
approach to detect moving objects from a moving platform.
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Comparative experimental results based on existing datasets
are described in Section IV and finally Section V summarizes
our approach and concludes the paper.

II. RELATED WORKS

A common approach to detecting moving regions relies
on the assumption of a planar scene as in the application
of airborne image sequences analysis for moving object
detection [5]. In [5] an adaptive particle filter and the EM
algorithm are used to detect moving objects. This method
can only be applied for simple motion and scene, whereas
in practice scenes can be complicated and have objects with
different depths. As an alternative, Wang et. al. [6] used
optical flow between every two adjacent frames to obtain
the motion information for each pixel. Based on the motion
information, they transferred the background model in the
previous frame in order to extract the foreground in the
current frame. The above-mentioned methods [5], [6] assume
a scene of a simple plane. This assumption is valid only for
aerial videos captured by an air-borne vehicle. [7] presented
a method utilizes multiple 2D affine transformations to
describe the background motion by a multi-classes RANSAC
method to solve the above limitation; however, this method
just uses two successive frames. As a result, when the objects
move slowly, only the edges can be detected.

To overcome the limitation of the planarity assumption,
Yamaguchi et al. [8] proposed a moving object detection
method by computing the ego-motion of the vehicle with a
monocular camera and reconstructing the 3D scene around
the vehicle. The method was successfully applied for the
detection of moving vehicles or pedestrians on the road. [9]
used multiview geometric constraints to detect objects. The
approach is non-casual since future information is required
which cannot be known at the current time. These methods
depend on an analysis of a reconstructed depth map, which
is a difficult problem by itself, and they are not expected
to work well for distant, small object detection, given the
fundamental limitation of structure-from-motion algorithms.

Without explicit 3D reconstruction, [10] presented an
interesting idea of performing moving object detection by
clustering the motion of the pixel trajectories, embedded
in a low dimensional space. These trajectories provide a
sparse labeling of the video and are used to build the
background and the foreground models. The models are
used to estimate the maximum posteriori pixel-wise labeling
of the video. This method has two limitations: (a) due to
the dependence on long term trajectories only, regions with
no trajectories may be discarded as background altogether,
and (b) their use of orthographic camera model means that



the motion information can be incomplete and the method
may fail to capture object boundaries. To overcome the
limitations of [10], Elqursh et. al [11] introduced a method
that accurately models appearance and motion to achieve
robust moving camera background subtraction. This method
merges the long term trajectories to accurately model long
term motion dependencies using a Gaussian mixture model,
and a Bayesian filtering framework for pixel-level appearance
models to estimate the regions as foreground or background.
The Bayesian tracking framework is an effective step, which
we adopt in our algorithm, although the idea of pixel
trajectory clustering cannot deal with a small population size
when moving objects are small.

Barnich et. al [12] proposed a novel method for back-
ground subtraction called ViBe which speeds up the param-
eter estimation step in modeling the background appearance
by that traditionally depends on past images instead, only
observed pixel values in the current image are used to
approximate the temporal history of a pixel and as a result it
provides fast responses to changing events in the background
when for example the focal length of the camera changes.

In this paper, we propose a method to detect and track
moving objects without requiring an explicit 3D reconstruc-
tion of the scene. Instead, the proposed method performs
motion compensation by two kinds of registration methods,
popularly used in medical image analysis, on wavelet com-
ponents in two levels, with a combination of a component-
based technique, and a pixel-based learning framework based
on HMM. Finally, we optimize the performance of our
algorithm by employing a pixel-wise particle filter as the
backend to the entire detection process.

III. PROPOSED METHOD

In this section we present a summary of our approach
which contains four major parts: motion recovery, back-
ground modeling, refinement of candidate detections, and
tracking. The block diagram of our proposed method is
shown in Fig. 1. First of all, using rigid and non-rigid
registration methods on wavelet coefficients in the motion
compensation step, a transformation T for warping the
background model in the previous frame to that in the current
frame can be estimated. Next, T is used to update the
background model. Then based on observations from the
previous frames, we can compute the probability of being
foreground/background for each pixel in the current frame
and then update the background model. Finally, to finalize
the detection of foreground pixels that belong to the moving
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Fig. 1. The process flow of our proposed method.

objects, a particle filter is applied. In the rest of this section
we explain each part of the proposed method in details.

A. Motion Recovery
Many methods have been proposed to compute motion

between two images. Some of them work by finding features
from images in the spatial domain [13], [14], [15] and the
other group of algorithms work in the frequency domain [16],
[17], [18], [19]. Images are typically registered by maximiz-
ing a similarity function, either locally or globally.

Displacement of each pixel between the current frame and
the previous frame using wavelet coefficients begins with
global motion estimation by a rigid registration method and
in the second step, we use a non-rigid method to register
pixels locally to perform local motion compensation. For
global image registration, we make use of the wavelet trans-
form, which decomposes an image into various sub images
based on local frequency contents. Two dimensional discrete
wavelet transform (DWT) can be obtained by applying DWT
across rows and columns of an image. We use wavelet trans-
form because of two main reasons. First, multi-resolution
registration methods are faster in terms of generating results
and this is mainly due to the low resolution of images at
multi resolution level. Second, wavelet makes better results
in comparison with other multi-resolution approaches such as
Gaussian pyramid. Wavelet does not blur the images through
the hierarchical pyramid as much as Gaussian pyramid [20].
We perform wavelet transform at two levels. We start the
registration process from the coarsest level, i.e. level 2. The
input image at each level is split into 4 bands (Lo Lo =
y00,Lo Hi = y01,Hi Lo = y10, and Hi Hi = y11) using the
lowpass and highpass wavelet filters on the rows and columns
in turn. The Lo Lo band subimage y00 is then used as the
input image to the next level (Fig. 2). Subimages y00,00 in
Fig. 2 from the current and the previous frames are used to
estimate the global motion model.

1) Global Motion Model: The global motion describes
the overall motion of the current frame with respect to
the previous frame due to camera motion. We compute the
global motion based on affine transformation on subimages
y00,00 between the current and the previous frames [13].
Then, we update y00,00 and other three wavelet coefficients
y00,01,y00,10, and y00,11 by the estimated affine transformation
matrix, Tglobal . Now, we can reconstruct an approximated
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Fig. 2. Wavelet decomposition in 2 levels. We use y00,00 for rigid
registration to compute the global motion model



image in level 1. Also, we rescale the transformation matrix
by a factor of 2, because we need this transformation matrix
as the global motion model for updating the background
model parameters in Section III-B and the size of the
background model parameters should be the same as size
of transformation matrix Tglobal .

2) Local Motion Model: The affine transformation cap-
tures only the global motion of the scene. In order to
improve the registration accuracy and account for a non-
plane scene, an additional transformation is required, which
models the local deformation of the scene. The nature of the
local deformation of the scene can vary significantly across
the depth of the objects in the scene. To define the local
deformation we use a free-form deformation (FFD) model,
based on B-splines [21], [22], which has been previously
applied to the tracking and motion analysis in cardiac images
[23]. The resulting deformation controls the shape of the
scene and produces a smooth transformation.

To deform a spline-based FFD, we denote the image size
y00 with 0  x  X and 0  y  Y , where X and Y are the
number of rows and columns, respectively. Let Y denote an
nx ⇥ny mesh of control points yi, j with uniform spacing r .
So, the FFD can be written as follows:

T1(x,y) =
3

Â
m=0

3

Â
l=0

Bm(u)Bl(v)yi+m, j+l (1)

where i = bx/nxc�1, j = by/nyc�1,u = x/nx �bx/nxc,v =
y/ny�by/nyc and where Bm represents the mth basis function
of the B-spline [21], [22] defined by the following equations.

B0(u) = (1�u)3/6 , B1(u) = (3u3 �6u2 +4)/6
B2(u) = (�3u3 +3u2 +3u+1)/6 , B3(u) = u3/6 (2)

In contrast to thin-plate splines [24] or elastic-body splines
[25], B-splines are locally controlled which makes them
computationally efficient even for a large number of control
points. In particular, the basis functions of B-splines have
a limited support, i.e., changing control point yi, j affects
the transformation only in the local neighborhood of that
control point [13]. To compute the best motion model, both
affine and FFD algorithm need to maximize the similarity
functions.

After computing local motion model Tlocal , the motion
model T in level one is computed by the sum of the local
and global motion model as follows [13]:

T (x,y) = Tglobal(x,y)+Tlocal(x,y) (3)

The motion model T is rescaled to generate a motion model
with the same size as the input frame.

3) Optimization: to find the optimal transformation, we
minimize a cost function associated with the global trans-
formation parameters, as well as the local transformation
parameters. The cost function for global transformation is
the image similarity z as (4) where [13], [26] suggested the
use of normalized mutual information (NMI) as a measure
of image alignment.

z (A,B) = H(A)+H(B)
H(A,B)

(4)

where H(A), and H(B) denote the entropies of images A,B,
and H(A,B) denotes their joint entropy, which is calculated
from the joint histogram of A and B.

Also, the cost function for local transformation is com-
puted by:

zsmooth =
1
V

Z X

0

Z Y

0
[(

∂ 2T1

∂x2 )2 +(
∂ 2T1

∂y2 )2 +2(
∂ 2T1

∂xy
)2]dxdy

(5)
where V denotes the image size in pixels. zsmooth defines
a cost function which is associated with the smoothness of
the transformation. This quantity introduces a penalty term
which regularizes the transformation. Non-rigid transforma-
tion iterates till k—zsmoothk < e1. After each iteration the
control points Y are recalculated by Y = Y+l —z

k—zk [13].

B. Background Modeling
We use the standard adaptive Gaussian mixture model for

background model, and it is summarized in this section for
the completeness of our algorithm description. In general,
we can estimate the background model by p̂(~x(t)|xT ,BG)⇠
ÂM

m=1 p̂mh(~x;~̂µm, ŝ2
mI). where ~̂µm and ŝ2

m,m = {1, ...,M} are
the estimates of the means and variances of the Gaussian
components, respectively. The identity matrix I has proper
dimensions, and h is a Gaussian probability density function.

After motion estimation, transformation matrix T is used
to move the position of the GMM model parameters from
the previous frame to the current frame. After this step of
motion compensation, we update the GMM model by [4].
GMM provides the initial background model through time.
This initial background model should be updated for the next
frame before being used to extract moving objects in the
current frame.

C. Refinement
After background subtraction by GMM, we have a binary

image with some noisy detected moving objects. To reduce
false-positive detections, we use component based and pixel
based methods to further process the detected foreground
pixels. First a component based method is used for each
foreground connected component and then a pixel based
method computes the probability of being foreground for
each pixel by hidden markov model (HMM) trained over
previous observations.

1) Component based refinement: In this step, we compare
the similarity between the background model and the cur-
rent frame where the connected components are considered
as potential foreground objects. Let us denote connected
components by CCi, i = 1, ...,N, where N is the number of
connected components. Also, Lt(CCi,A) is the area of the
connected component i at time t in image A. We filter the
connected components by the following rule:

I f corr(Lt(CCi,CF),Lt(CCi,BGM))> T hs

Lt(CCi,BGM) = Lt(CCi,CF), and CCi = 0 (6)

where corr(., .) computes correlation between two areas and
T hs is a chosen threshold. CF and BGM also are the current



frame and the background model, respectively. As the result
of evaluating (6), some foreground pixels will be changed to
background and, as a result, we must also reflect this change
when updating the background model by:

(
~̂µm(x,y) = I(x,y), f or all m components
ŝ2

m = c
(7)

where I(x,y) is the intensity value of pixel (x,y) and c is the
initial constant value. We set c = 10 as in [4].

2) Pixel based refinement: After coarse refinement of the
connected components, we finalize our background model
and detect moving objects to track. In order to decide the
label of each pixel for being foreground or background at
time t, the hidden markov model (HMM) is employed. With
HMM, the state of a pixel at time t encapsulates all we
need to know about the history of the pixel in order to
predict its future label. Let us denote the observation at
time t by the variable Ot . Also, the variable St refers to
the state of each pixel at time t, which is a hidden variable.
Each observation Ot may take values in {0,255} and each
hidden variable St may take state values in {b, f}. The joint
probability distribution p(O,ST ) of the whole set of variables
{o,s} is parameterized by three parameters: the transition
matrix A, containing the transition probabilities akl = p(St =
k|St�1 = l), the observation emission matrix B, containing the
symbol emission probabilities bkr = p(Ot = r|St = k), and the
initial state probabilities pk = p(S0 = k). The probability is
computed by:

p(O,ST ) = ps0

T�1

’
t=1

ast st�1

T�1

’
t=0

bst ot (8)

In our method, the initial state probabilities are pk =
p(S0 = k) = 0.5,k = {b, f} and the transition matrix A
is [b1, b2; b3, b4] in Matlab format, which means p(St =
b|St�1 = b) = b1, p(St = f |St�1 = f ) = b4, p(St = b|St�1 =
f ) = b2 and p(St = f |St�1 = b) = b3. Also, we assume the
emission probabilities are p(Ot = r|St = b) = p(Ot = r|St =
f ) = 0.5.

To find the most likely state for any pixel in time,
the forward algorithm can be used. Forward probability is
computed by:

f̂1:T (si) = P(ST = si|O1:T ) =
P(o1,o2, ...,oT ,ST = si)

P(o1,o2, ...,oT )
(9)

where f̂1:T are forward probabilities over T observations,
respectively. Also, f̂0:0 = P(S0 = k) = [0.5,0.5]. We use
Eq. (10) to classify each pixel as background or foreground
at time t.

f = log
P(ST = f |O1:T )

P(ST = b|O1:T )
(10)

where for f > 0 the pixel is considered as foreground and
it is otherwise background. Also, the background models of
those pixels whose states are changed should be revised by
Eq. (7). Now the background model can be used to extract
moving objects from next frame.

D. Tracking

After the refinement step, there remain some false positive
foreground pixels, especially in complicated scenes with
noisy objects like leaves on trees. In order to further improve
the performance of our method, we resort to tracking to
exploit the temporal coherence constraint of foreground
objects. Specifically, we apply a particle filter as a real-
time tracker to find and track the moving objects from the
pixels that are classified as foreground by HMM. Different
implementations for particle filters exist in the literature. In
this paper we use a generic particle filter [27], as summarized
in Algorithm 1. In the algorithm, let {Xi

0:k,W
i
k}

Ns
i=1 denote the

posterior pdf p(X0:k|Z1:k), where {Xi
0:k, i = 0, ...,Ns} is a set

of support points with associated weights W i
k and X0:k is the

set of all states up to time k. Also, p(.) and q(.) denote
the posterior and importance density functions. Zk and Ne f f
show the observation at time k and the effective sample size,
respectively. In this paper we maintain a particle filter for
each foreground pixel where Xk and Zk are the state and the
observation of the pixel at time k.

IV. EXPERIMENTAL RESULTS

The experimental results in this section demonstrates
the utility of our proposed method in indoor and outdoor
applications. All of these experiments are done in Centre
for Intelligent Mining Systems (CIMS) at the University of
Alberta and all implementations are done by MATLAB and
C++. b1,b2,b3 and b4 in matrix A are set at 0.8, 0.2, 0.2 and
0.8, respectively, and T hs in component-based refinement is
set to 0.98 in our experiments. In the FDD algorithm we set
the maximum number of iterations to 10. Furthermore, to
keep FFD from deviating significantly from the background
model, we set the number of control points to the one half of
the number of rows times one half of the number of columns.

We tested our method on different video sequences
taken in our campus, in the ViBe dataset from
http://www2.ulg.ac.be/telecom/research/vibe, in the
PETS dataset, and in the Freiburg-Berkeley dataset from
http://lmb.informatik.uni-freiburg.de/resources/datasets.

Fig. 3 shows the results from one experiment in the indoor
environment where a person moves across the scene and is
detected by a moving camera. Rows (a) and (b) illustrate

Algorithm 1 Generic Particle Filter

1: [{Xi
k,W

i
k}

Ns
i=1] = PF [{Xi

k�1,W
i
k�1}

Ns
i=1,Zk]

2: for i = 1 To Ns do
3: Xi

k ⇠ q(Xk|Xi
k�1,Zk) and W i

k µ W i
k�1

p(Zk|Xi
k)p(Xi

k|X
i
k�1)

q(Xi
k|X

i
k�1,Zk)

4: end for
5: for i = 1 To Ns do Normalize W i

k
6: end for
7: Calculate ˆNe f f =

1
ÂNs

i=1(W
i
k)

2

8: if ˆNe f f < NT then
9: [{Xi

k,W
i
k}

Ns
i=1] = Resample[{Xi

k,W
i
k}

Ns
i=1]

10: end if
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(a)                           (b)                          (c) 

Fig. 3. Results of detecting a moving object by moving camera in indoor
environment

selected two frames from video sequences. First column
of Fig. 3 shows input frames in two different times and
second column shows their background model computed by
our method. The final column illustrates the results of the
extracted moving object from the scene. In this experiment,
the background is complicated with lots of edges. Most
of methods have some difficulty with these kinds of back-
grounds, when the camera moves, but our method can detect
the moving object accurately. In this experiment, the color
of the moving object is similar to parts of the background,
and successful detection of the object in such a background
shows the robustness of our method in difficult situations.

We have also conducted experiments in a video surveil-
lance application in the outdoor environment and compared
the results with [7] on a video in the PETS dataset. Fig. 4
shows some example results on outdoor videos to extract
and track small, fast and distant objects. Second and third
columns of Fig. 4 display foreground pixels by simple affine
and multiple 2D affine transformation from [7], respectively.
Column (d) shows the results of our proposed method based
on two-level wavelet registration by combination of the
affine and the FFD algorithm. This experiment shows the
robustness of the registration technique in our method in
comparison with two other methods.

Also, we compared results of our method with the ViBe
method [12]. Fig. 5 shows the result on their dataset where
the first column displays two sample frames in a video
sequence, captured by a camera with a variable focal length.

!

(a)                               (b)                             (c)                              (d) 

Fig. 4. Each column shows two selected frames from input video. Column
(a) shows the input images. Column (b) illustrates the foreground pixels by
affine transformation. Columns (c) and (d) show the result of multiple 2D
affine transformation from [7], and our proposed method, respectively.
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(a)                                          (b)                                          (c) 

Fig. 5. Left column (a) shows input selected frames with variable focal
length. Middle column (b) and right column (c) show detection results of
the ViBe technique and our proposed method, respectively.

The middle and the last columns of Fig.5 are results of the
ViBe and our method, respectively. The detected foreground
objects in the last column are marked by red particles.
Clearly, our method is able to handle edges much better
than [12], which mistook many background pixels as fore-
ground. We attribute this largely to the use of a particle filter
that is less affected by momentary mistakes than ViBe is.

Also, we applied the proposed method on a challenging
image sequence from the Freiburg-Berkeley dataset. Fig. 6
shows the results of our method in comparison with methods
from [10] and [11]. First and second columns of Fig. 6
display the results from their methods, respectively and the
last column illustrates the result of our proposed method. In
this case, columns (a) and (b) show significant false positive
pixels whereas our method is able to remove those pixels
from the foreground. In addition to the qualitative results
shown in figures 5 and 6, we also provide the qantitative
comparison of the aforementioned methods including [12],
[10], [11], with our proposed method in table I, on two
benchmark video sequences. Three common metrics; namely,
Percision, Recall and F1-score [11] are used for evaluation.
We can infer that our method is superior to all the evaluated
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Fig. 6. Columns (a) and (b) show the detection results of [10] and [11],
respectively. Last column displays the results of our proposed method in
comparison with two other methods.



TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS

Dataset Methods Prec Rec F1
ViBe dataset Our method 0.95 0.98 0.97

(Fig. 5) Barnich et al. [12] 0.13 0.71 0.22
Freiburg-Berkeley Our method 0.89 0.90 0.89

Tennis video sequences Elqursh et al. [11] 0.86 0.92 0.89
(Fig. 6) Sheikh et al. [10] 0.27 0.83 0.40

methods. Finally, we examine video sequences acquired by
an aerial vehicle and by a hand held moving camera looking
downwards from a building. First row of Fig. 7 shows the
detection of moving objects in an aerial video with fast zoom
variation. Second row of Fig. 7 illustrates results on videos
from a hand-held camera that is moving freely. Column (c)
in the second row of Fig. 7 shows three moving objects in
which third object is hard to see or detect even by a stationary
camera; however, our proposed method can detect the third
object when the camera is moving.

V. CONCLUSION

We have presented a method to extract moving objects
from a moving platform in which the motion model is
estimated by a two-level registration method with discrete
wavelet transform and that model is then used to align images
and update the GMM background model for extracting
foreground pixels. We propose to suppress false positive fore-
ground pixels effectively with component-level and pixel-
level techniques. Finally, a particle filter is used to detect
and track moving objects in order to further improve the
detection accuracy. Our experiments on different challenging
video sequences validate our proposed method for indoor and
outdoor applications. In particular, our registration method
for motion compensation combines global and local tech-
niques and generates higher quality foreground pixel labels.
As well, our particle filter backend is shown to be effective
to eliminate false-positive detections by integrating temporal
history of pixel labels.
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