
Fast-SeqSLAM: A Fast Appearance Based Place Recognition Algorithm

Sayem Mohammad Siam and Hong Zhang

Abstract— Loop closure detection or place recognition is a
fundamental problem in robot simultaneous localization and
mapping (SLAM). SeqSLAM is considered to be one of the most
successful algorithms for loop closure detection as it has been
demonstrated to be able to handle significant environmental
condition changes including those due to illumination, weather,
and time of the day. However, SeqSLAM relies heavily on
exhaustive sequence matching, a computationally expensive
process that prevents the algorithm from being used in dealing
with large maps. In this paper, we propose Fast-SeqSLAM,
an efficient version of SeqSLAM. Fast-SeqSLAM has a much
reduced time complexity without degrading the accuracy, and
this is achieved by using an approximate nearest neighbor
(ANN) algorithm to match the current image with those
in the robot map and extending the idea of SeqSLAM to
greedily search a sequence of images that best match with
the current sequence. We demonstrate the effectiveness of our
Fast-SeqSLAM algorithm in appearance based loop closure
detection.

I. INTRODUCTION
The computation task of building or updating a map and

simultaneously localizing the robot in the map while a robot
is exploring an unknown environment is commonly referred
to as simultaneous localization and mapping (SLAM). In a
SLAM system, robots need to recognize previously visited
locations, i.e., detect loop closures. Correctly recognizing
previously visited locations, a SLAM algorithm is able to
optimize the pose constraints between the nodes, overcome
incremental pose drift [1], [2] and build a correct map.

For long term and large scale SLAM operation, it is
important to recognize locations in changing environments
over the course of days, nights and seasonal changes. FAB-
MAP 2.0 [3], a successful place recognition algorithm based
on single image matching and Bayes filtering, demonstrated
its operation over a route of 1000 km. However, a single
location may look completely different at different times due
to illumination and weather changes. As a result, it becomes
difficult to match two images of the same location, and
algorithms like FAB-MAP which are based on single image
matching, have to resort to filtering techniques or will fail
quite easily [4].

Milford and Wyeth [4] proposed a sequence based place
recognition algorithm, known as SeqSLAM, which finds
a sequence of images in the robot map, rather than a
single image, that are the best match for the current image
sequence being captured by a moving robot. SeqSLAM

*This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) through the NSERC Canadian Field Robotics
Network (NCFRN)

Sayem Mohammad Siam and Hong Zhang are with the Department
of Computing Science, University of Alberta, Edmonton, AB, Canada
siam,hzhang@ualberta.ca

has demonstrated better performance in recognizing places
that underwent severe appearance changes than the other
successful SLAM algorithms like FAB-MAP 2.0 [5]. Most
recently, Milford and Shen [5] have demonstrated significant
improvement of the viewpoint invariance of SeqSLAM by
generating synthetic viewpoints using the state-of-the-art
deep learning techniques [6]. However, SeqSLAM, which
is based on exhaustive sequence search, is computationally
costly when the number of images or nodes in the map is
large. This is unfortunate as a robot needs to perform all the
computation for localization including loop closure detection
online in a SLAM system.

The key motivation for our work is to develop a place
recognition algorithm for a large scale and long term op-
eration, based on sequence matching like SeqSLAM but
computationally efficient. To achieve a high computational
efficiency, we first store the image descriptors of a map
in a tree structure. Then we use an approximate nearest
neighbor (ANN) algorithm [7] to search for N best nearest
neighbor images for a current view where N is constant
and much smaller than the number of images in the map,
n. In addition, rather than computing the distance between
all possible image pairs as in SeqSLAM, for each image, we
only compute its distance to its N nearest neighbors and store
the information in a sparse difference matrix. In addition, we
modify the sequence matching algorithm in SeqSLAM so
that we can still find the best match for a current sequence
in a sparse difference matrix. Specifically, in our modified
sequence matching algorithm, we do not search exhaustively
as in the original SeqSLAM algorithm; rather we greedily
search only from those locations in the map where the best
K matches for the current view of the robot are found,
among the N total matches, where K is smaller than N.
Velocity information of the robot is then used to determine
where to search next in the map. Due to the efficiency in
the construction of the difference matrix and the greedy
sequence search algorithm, the computational complexity
of our algorithm is O(n logn) for finding all loop closure
nodes between any two traversals of an environment while
SeqSLAM has a computational complexity of O(n2). Most
importantly, when the accuracy of our algorithm is compared
with that of SeqSLAM experimentally the computational
efficiency of our proposed algorithm does not come at the
expense of accuracy.

The rest of the paper is organized as follows. In Section II,
we summarize relevant prior research in place recognition.
Section III describes our algorithm, Fast-SeqSLAM for loop-
closure detection. Our experimental design and results are
presented in Section IV focusing on computational complex-

ity and the accuracy of our algorithm. We conclude the work
and discuss future research in Section V.

II. RELATED WORK

Condition invariance and computational efficiency are two
key prerequisites for large scale and long term SLAM
operations. Our work is motivated by a desire to build a place
recognition algorithm which is suitable for a long-term and
large-scale SLAM system.

Bag-of-Words, a popular technique initially developed for
efficient text retrieval and later extended to image matching
[8], has been extensively used for place recognition [9],
[10], [11]. In a typical place recognition system that uses
the BoW approach, scale-invariant local image descriptors,
such as SIFT [12] and SURF [13] keypoints, are extracted
from the images and these keypoints are vector-quantized
to serve as words in the BoW technique. A very successful
algorithm, FAB-MAP 2.0 [3], which has demonstrated in its
operation for place recognition along a route more than 1000
km in length, employs the Bag-of-Words technique. In this
algorithm, only the current view of a single image is used to
vote for map images, and a Bayes filter is used to enforce
spatial and temporal consistency.

Network flows [14] has been used as an alternative to
SeqSLAM’s sequence searching. A directed acyclic graph
(DAG) is created to store the similarity between pairs of im-
ages and formulate image matching is solved as a minimum
cost flow problem while incorporating sequence information.
Place recognition is equivalent to finding a sequence which
has the minimum flow cost. However, the time complexity
for this technique remains O(n2).

Hidden Markov Model (HMM) with Viterbi algorithm
[15] has been used for finding the best matching sequence for
a given sequence of images [16], inspired by Dynamic Time
Warping (DTW) from speech recognition [17]. The state
transition matrix is built using local velocity constraints of a
robot. However, they need to calculate a complete similarity
matrix for all the possible image pairs and hence the time
complexity of this algorithm is O(n2).

To reduce the time complexity of SeqSLAM, a particle
filter technique has been proposed by Liu and Zhang [18].
Rather than computing the matching scores for all candi-
date sequences in the map, a subset of these sequences
are sampled and evaluated. The promising ones with high
probabilities are kept for further evaluation, the unlikely ones
are dropped, and new candidates are introduced in the next
round of evaluation. Although a particle filter can alleviate
to some extent the computational cost, convergence to the
correct solution is probabilistic and the overall complexity
of the algorithm is still O(n2).

III. FAST-SEQSLAM

The general setup of SeqSLAM, which we adopt, assumes
two traversals of the same environment or route. We assume
that the map is built in the first traversal from n images and
the second traversal contains m images among which loop
closures exist. The goal is to determine if any sequences

in the second traversal overlap with any in the first. Both
the length and the initial location of a possible matching
sequence are unknown.

The key idea in our Fast-SeqSLAM algorithm is that
we should avoid searching all the sequences in the map
exhaustively for the best matching sequence to the current
sequence; instead, we can search greedily among sequences
defined by the most likely initial matching images and use
motion continuity to extend and continue the search. This
initial image set is small, and its size is constant (N) and
does not grow with the size of the map.

Further, to identify promising initial locations of matching
sequences, rather than linearly comparing with all map
images, we use an approximate nearest neighbor algorithm
to find the N best nearest neighbor images in the map with
respect to the current robot view, and we create a sparse
difference matrix with similarity scores only for these nearest
neighbors. Then, we greedily search for the best matching
sequence only from the K best matching locations among N
locations. Our algorithm is approximate and its performance
depends on the difference matrix. The approximation of the
difference matrix depends on the value of N. On the other
hand, choice of K depends on the reliability of the matching
scores in the difference matrix and usually much smaller
than N. Moreover, the searching is computationally more
expensive than computing the difference matrix. Selection
of K limits the searching.

We call each value in the difference matrix as difference
value, and the summation of all the difference values of a
trajectory sequence as difference score, using the notations
in SeqSLAM [4]. Fig. 1 shows an example of a difference
matrix where n = m = 13, and N = 2. The brighter a cell is,
the larger the difference value. Sequence matching uses this
sparse difference matrix, and proceeds as described below
where the explanations refer to lines in Algorithm 1, the
pseudocode of our sequence matching algorithm.

1) Initialize sparse difference matrix and score matrix
with a high value (Lines 2-3).

2) Build a tree using the images of our map (Line 5).
3) Find N best nearest neighbor locations for the current

view of the robot (Line 8).
4) Update the sparse difference matrix with difference

values returned by ANN function for each of the N
locations (Line 9).

5) For each probable loop closure locations, calculate
the minimum difference score and update the robot’s
current location (Lines 14-22).

6) Finally, find the best matching location for the current
robot view, and normalize the matching value (Lines
23-26).

In the following subsections, we describe three main compo-
nents our algorithm in detail which are finding approximate
nearest neighbors (Line 8), building a sparse difference
matrix (Line 9) and sequence matching (Lines 13-21).

Algorithm 1: Algorithm for Finding Matches
Input:
Q = Images in the robot views
M = Images in the map
Output:
matches = A vector containing matching indices and
matching values

1 Procedure findMatches(Q, M)
2 global D = initialize(len(M), len(Q))
3 global S = infinity(size(D)) . matrix for score

values
4 matches = []
5 T = Tree(M)
6 foreach Image Ii in Q do
7 gi = descriptor(Ii)
8 N-matches, distances = ANN(T, gi, precision)
9 D = updateDifferenceMatrix(D, i, N-matches,

distances)
10 K-locations = N-matches(1:K)
11 probable-loop-closures = K-locations ∪

locations
12 locations = []
13 foreach location j in probable loop closures

do
14 min score = min

vmin,...vmax
score(j,T,V)

15 S j,T = min score
16 estimated velocity = argmin

vmin,...vmax

score(j,T,V)

17 updated-location = j+estimated velocity
18 if min score < max score then
19 locations.add(updated-location)
20 end
21 end
22 value = min

j=1,2···m
(ŜT

j)

23 value = normalize(value)
24 index = argmin

j=1,2···m
(ŜT

j)

25 matches(T) = (index,value)
26 end
27 return matches
28 Procedure score(j, T, V)
29 S = ∑

T
t=T−ds

Dt
k where, k = j+V (t−T)

30 return S

A. Approximate Nearest Neighbor

For finding the approximate nearest neighbor (ANN) for
an image, we use FLANN by Muja and Lowe [7]. We control
the accuracy of the result by setting its precision parameter.
FLANN selects the ANN parameters automatically for a
given dataset and a target accuracy. It uses either randomized
kd-trees [19] or hierarchical k-means tree [20] algorithm.
One of the factors that has a great impact on the nearest
neighbor matching is data dimensionality. Muja and Lowe
demonstrated speedup by a factor of 103 for data with

Time, t

M
a
p

V_min

V_max

Fig. 1: The figure shows a sparse difference matrix where
N = 2. The brighter a cell is, the larger the difference value.
Trajectory line with maximum velocity and trajectory line
with minimum velocity are shown. We calculate 2 nearest
neighbors for each node (only two cells in each column are
darker than others). The dotted line is the trajectory which
has minimum difference score for the red bordered cell.

dimensions from 101 to 103 and a target accuracy of 80%. In
our study, the dimensions of the image descriptors are under
1024.

In one implementation of our algorithm, we first down-
sample each image to 32× 32 and then extract features
using the HOG [21] descriptor, which has 334 dimensions.
Alternatively, we can also use raw images as their descriptors
as in SeqSLAM so that a descriptor has 1024 dimensions.
HOG has a smaller dimension size and therefore less ANN
search time, than the raw image descriptor.

B. Sparse Difference Matrix

We initialize the difference matrix to large values (bright
cells in Fig. 1). We use FLANN to create a tree structure to
store the map image descriptors to facilitate efficient search.
For a map or traversal of n images, each image can find
its approximate nearest neighbors in the map in O(log(n))
time, vs. O(n) in the case of linear search. The distance
values returned by the ANN algorithm are used to replace the
initial values whenever they are computed (where N=2 for
the example in Fig. 1). Consequently, our difference matrix
is sparse containing distances to (approximate) N nearest
neighbors along each column (row).

C. Sequence Matching

We calculate minimum difference score only from the
locations in the map where the best K matches for the
current view of the robot are found while we have a total
N matching locations (Algorithm 1 Line 10). N determines
how approximate our difference matrix is. Then we update
the robot’s current location using robot’s current velocity. We
update robot’s location so that the loop-closure node between

two sequences are temporally continuous. In following, we
describe how we calculate difference score and greedily
update robot’s location.

1) Difference Score: Each column of our difference ma-
trix D is a difference vector. Difference vector D̂(T), where T
is the current time, contains N valid image difference values
for an image I2 j with I1T where j = 1,2 . . .m. I2 j is an image
in the map and I1T is the current robot view. We search for
a sequence of images in the map along the rows of D which
best match with the sequence, I1,T−ds , I1,T−ds+1, · · · I1,T ,
across the columns of the robot views where ds is the length
of sequence. To recognize the current sequence of robot
views in the map, a search is performed through the space
M of image difference vectors.

M =
[
D̂T−ds , D̂T−ds+1 . . . D̂T

]
(1)

In the example in Fig. 1, different trajectory lines that
originate from the red bordered cell are drawn for different
velocities. We calculate difference score S of a trajectory line
by summing up the difference values the line passes through.
Using Equations (2) and (3), we calculate difference score
for a particular velocity V . In Equations (2) and (3), Dt

j is
the difference value between the robot view t and map image
j, V is the trajectory velocity and s is the image number in
the map for which we are calculating the sequence score.

S =
T

∑
t=T−ds

Dt
j (2)

j = s+V (t−T) (3)

In Algorithm 1, we use the procedure score(j,T,V) in Lines
32-34 to encapsulate the calculation by the above equations.

2) Greedy Motion Model Estimation: To find continuous
or temporally consistent loop-closure nodes efficiently, we
use a greedy motion model estimation technique. For a
current sequence of robot views, we find the best sequence of
images in the map. For each probable loop closure node, we
calculate a difference score for different trajectories where
each trajectory line corresponds to a velocity or motion
model. If a node is actually a loop closure node, the robot
should move along the trajectory defined by the velocity from
previous nodes in the sequence. In other words, the best fit
trajectory is the one that has the minimum difference score.
We can update the robot’s current location using the motion
model or velocity that corresponds to the best-fit trajectory.

We only update the robot’s current location when the
best-fit trajectory line has at least one nearest neighbor; the
trajectory is otherwise abandoned. In Fig. 2a, the dotted
trajectory line has the min-difference-score, and we use that
velocity to update robot’s current location. Fig. 2b shows the
current updated location at the red bordered cell.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
algorithm.

(a) (b)

Fig. 2: In Fig. 2a, the dotted black trajectory has the
minimum difference-score for the red bordered cell. Red
bordered cells are current and next locations of the robot.
We follow the min-difference score trajectory line to update
robot’s current location (next red bordered cell). In Fig. 2b,
we show the updated location.

A. Datasets

In this section, we run our algorithm for loop-closure de-
tection on three different datasets used commonly in previous
studies of visual loop closure detection in SLAM, each of
which consisted of at least two traversals of the same route
but at different times and, as a result, all datasets involve
severe appearance changes. The datasets are as follows:

• Nordland Dataset, train ride in northern Norway,
• UA dataset, from University of Alberta, Edmonton,

Canada, and
• Garden Points Walking, from Queensland University of

Technology, Brisbane, Australia.

The Nordland dataset [22] contains four traversals of the
same route in winter, spring, summer and fall. It is a 728
km long train ride in northern Norway and has a total 37500
images. The UA dataset was collected by a Husky robot
with a normal RGB camera and the Garden Points Walking
dataset is collected by Arren Glover and has two traversals,
one during day and the other at night. All these datasets
have ground truth information to allow easy performance
evaluation. We compared our algorithm with OpenSeqSLAM
[22], an implementation of SeqSLAM, in terms of metrics
for accuracy and efficiency as described in detail below.

TABLE I: Parameters

Parameter Description and Values
Rx,Ry Reduced image size for all the datasets, we used [Rx,Ry]

= [32,32] in all the datasets
Cell size For HOG, we used Cell size = [8,8]
ds Trajectory length in numbers, we used ds = 20 in Nord-

land dataset, ds = 30 in UA and ds = 20 in Garden points
N Number of nearest neighbor matches we calculate for

current view, we used N = 100 in Nordland dataset, N =
10 in UA and N = 10 in Garden walking dataset

K Number of best matching locations among N locations
where we search for the best matching sequence, K = 5
in Nordland dataset, K = 2 in UA and K = 2 in Garden
points

Vmin Minimum trajectory speed, Vmin = .4Vave
Vmax Maximum trajectory speed Vmax = 1.5Vave

B. Precision-Recall

In order to measure the accuracy of the different algo-
rithms for loop closure detection, we generate precision and
recall values while varying the threshold on similarity be-
tween sequences to determine if a loop closure has occurred.
We consider a match as positive if it is within a certain offset
distance from the ground truth location.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

recall

pr
ec

is
io

n

Fast−SeqSLAM with HOG
Fast−SeqSLAM with raw image
SeqSlam

Fig. 3: Nordland dataset.

We compared our algorithm with SeqSLAM and we
plotted the precision-recall curve. As mentioned, we used
HOG in our algorithm in order to reduce the dimensionality
of the image descriptor and allow efficient and accurate ANN
search. However, even if we use raw image as a descriptor as
in SeqSLAM, our Fast SeqSLAM is still able to achieve good
performance. Therefore, in our experiments, the following
algorithms were included in the comparison, and the results
are summarized in Figs. 3-5.
• Fast-SeqSLAM with HOG (red).
• SeqSLAM (blue).
• Fast-SeqSLAM with raw image as descriptor (green).

Fig. 3 shows the comparative results for Nordland dataset.
All algorithms have almost the same performance. For the
Garden Points dataset, in Fig. 4, our algorithm with HOG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

recall

pr
ec

is
io

n

PR curves

Fast−SeqSLAM with HOG
Fast−SeqSLAM with raw image
SeqSlam

Fig. 4: Garden Points dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

recall

pr
ec

is
io

n

PR curves

Fast−SeqSLAM with HOG
Fast−SeqSLAM with raw image
SeqSlam

Fig. 5: UA dataset.

descriptor performs better than SeqSLAM. This result is
somewhat surprising as our algorithm is a greedy version
of SeqSLAM. We observed that this result is due to the
fact that the images in the dataset are captured closely
with each other and, as a result, the contrast enhancement
step on the difference matrix in SeqSLAM would degrade
its performance, as we verified experimentally. Contrast
enhancement on the difference matrix did not help SeqSLAM
in this case since each image matches with nearby images
because of their high similarity. Using the dataset collected
on the University of Alberta Campus at two different times of
a day with a Husky robot, all three algorithms have a similar
performance as shown in Fig. 5, with SeqSLAM performing
better for low recall values and Fast SeqSLAM better for
high recall values. We have given the parameter values we
used in our experiments in Table I.

C. Computational Complexity and Execution Time

In our algorithm, we use a tree structure to store the image
descriptors of a map, and tree construction takes O(n logn)
time. Calculation of the nearest neighbors for the robot’s
current view has a time complexity of O(logn). If we use a
single nearest neighbor for each image, we will have m total
values in the matrix where m is the number of columns in
the difference matrix. We search sequences greedily and we
continue searching until the matching sequence has at least
one nearest neighbor. In the worst case, we may calculate a
difference score for ds extra cells in the difference matrix.
So we have a time complexity of O(mds) for finding all the
loop closure nodes between the two traversals. Since ds, the
trajectory length, is a constant, we can write O(m) instead of
O(mds). The overall time complexity becomes O(n logn+m)
for finding all loop closure nodes, for a map with n images
and a traversal of m images. If we assume n≈m in general,
then the overall complexity of Fast SeqSLAM is O(n logn).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

7
x 10

4

Number of images

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Fast−SeqSLAM

SeqSLAM

Fig. 6: Nordland dataset, execution time vs number of
images.

Fig. 6 demonstrates the comparison of execution time of
our algorithm with SeqSLAM on one dataset using different
number of images of the dataset. The red curve is for
our Fast-SeqSLAM algorithm and the blue curve is for
SeqSLAM. The y-axis shows the execution time in seconds.
For a small map, for example 5000 images, execution time
does not differ much. However, for a large map, for example
37000 images, our algorithm runs in 40 minutes whereas
SeqSLAM takes 18 hours, i.e., Fast-SeqSLAM improves
SeqSLAM by a factor of 27 in execution time in this case.
Recall that each dataset contains two traversals of the same
route, and the above times are what is required to find all
corresponding sequences or loop closures between the two
traversals.

V. CONCLUSIONS

In this paper, we have proposed an efficient version
of SeqSLAM, which we refer to as Fast SeqSLAM. Our
proposed algorithm is able to retain the key advantages
of SeqSLAM in terms of place recognition accuracy, and
at the same time, much more efficient than SeqSLAM,
speeding it up as much as by a factor of 27, on a map
with 37K keyframes. Our algorithm is greedy, and its key
ideas that allow us to achieve this efficient are (a) we avoid
computing a complete difference matrix between the map
images and those observed by the robot, and (b) possible
matching sequences in the map are searched strategically and
selectively rather than exhaustively. In fact, it is possible to
develop an online version of SeqSLAM based on these two
key ideas. We are leaving this as our future work.

The implementation of Fast SeqSLAM is available at:
https://github.com/siam1251/Fast-SeqSLAM. It is written in
Matlab.

REFERENCES

[1] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g 2 o: A general framework for graph optimization,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011, pp. 3607–3613.

[2] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose
graph slam,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 1879–1884.

[3] M. Cummins and P. Newman, “Appearance-only slam at large scale
with fab-map 2.0,” The International Journal of Robotics Research,
vol. 30, no. 9, pp. 1100–1123, 2011.

[4] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based naviga-
tion for sunny summer days and stormy winter nights,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 1643–1649.

[5] M. Milford, C. Shen, S. Lowry, N. Suenderhauf, S. Shirazi, G. Lin,
F. Liu, E. Pepperell, C. Lerma, B. Upcroft, et al., “Sequence searching
with deep-learnt depth for condition-and viewpoint-invariant route-
based place recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2015, pp. 18–
25.

[6] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for
depth estimation from a single image,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
5162–5170.

[7] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[8] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on. IEEE, 2003, pp. 1470–1477.

[9] D. Filliat, “A visual bag of words method for interactive qualitative
localization and mapping,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE, 2007, pp. 3921–
3926.

[10] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Fast and
incremental method for loop-closure detection using bags of visual
words,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1027–
1037, 2008.

[11] M. Cummins and P. Newman, “Fab-map: Probabilistic localization
and mapping in the space of appearance,” The International Journal
of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

[12] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[14] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss, “Robust visual
robot localization across seasons using network flows.” in AAAI, 2014,
pp. 2564–2570.

[15] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[16] P. Hansen and B. Browning, “Visual place recognition using hmm
sequence matching,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2014, pp. 4549–4555.

[17] L. Rabiner and B.-H. Juang, “Fundamentals of speech recognition,”
1993.

[18] Y. Liu and H. Zhang, “Towards improving the efficiency of sequence-
based slam,” in 2013 IEEE International Conference on Mechatronics
and Automation. IEEE, 2013, pp. 1261–1266.

[19] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[20] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 2161–
2168.

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp.
886–893.

[22] N. Sünderhauf, P. Neubert, and P. Protzel, “Are we there yet? challeng-
ing seqslam on a 3000 km journey across all four seasons,” in Proc.
of Workshop on Long-Term Autonomy, IEEE International Conference
on Robotics and Automation (ICRA), 2013, p. 2013.

