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Abstract— Although passive sensors are widely used for many
mobile robotics applications that perform mapping and local-
ization functions, there are many environments (e.g., mining and
planetary) where active sensors are more practical. However,
at present, most 3D SLAM algorithms that do use LiDAR
and/or time-of-flight (ToF) sensors exploit only range and
bearing information associated with these measurements, but
not intensity information. This paper presents a new approach
that attempts to explicitly incorporate an intensity model as
part of a sparse bundle adjustment (SBA) estimation problem.
An observability analysis shows that a solution exists, and
simulation results verify its potential utility.

I. INTRODUCTION

All LiDAR-based SLAM algorithms use the range data
that LiDAR data provides, but very few make use of the
intensity data that accompanies each range measurement.
So far, the few who have used intensity measurements
predominantly use them as a way to improve upon the
popular Iterative Closest Point (ICP) algorithm [1] or form
intensity images and apply appearance-based computer vi-
sion techniques to describe and detect 2D features and match
them across images [2]. However, if intensity—like range
measurements—could be modelled and predicted based on
the robot and map state variables, as well as known sensor
noise characteristics, this would open up the possibility of
using intensity as an additional measurement to constrain the
estimates of robot pose and the position of landmarks in its
environment. It could also lead to the addition of reflectivity
and surface normals as estimated parameters in the robot’s
map.

The primary motivation for the work presented in this
paper is to develop accurate and computationally efficient
LiDAR-based SLAM algorithms for potential deployment on
ESA’s planetary exploration rovers, while also envisioning
the application of these results to Earth applications (e.g., in
mining) where robotic vehicles work in environments having
unpredictable lighting conditions or no external lighting.

Firstly, we ask whether it is possible to model intensity
measurements as a function of robot and map parameters.
The answer to this question lies in a large body of previous
work. In the computer vision literature the problem of shape-
from-shading bears many similarities to the problem at hand.
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By assuming a known light source direction and modelling
brightness as a function of surface shape, it has been shown
that shape can be derived from intensity gradients in camera
images [3]. As an extension to this, varying known light
source directions across multiple images of the same scene,
has been used in a technique called photometric stereo to
estimate surface shape and reflectivity [4].

Höfle and Pfeifer [5] described a method for producing
arial LiDAR intensity images that are proportional to the
reflectance of the measured surface by modelling the power
return of the laser as a diffuse reflection and estimating the
surface normal using nearest neighbor range measurements.
modelling non-diffuse reflections in a scene viewed by pas-
sive sensors has been demonstrated in the computer graphics
domain [6] with parametric models that contain both diffuse
and specular parts in a given reflection. Thus, despite the
complexity of modelling light reflections, information can
be recovered about the scene from camera intensity images.
A common assumption is a known light source direction,
which has limited the use of these techniques in robotics.
However, in the case of active sensors this is usually true.

Can additional state parameters in the map provide a
benefit to the applications for which SLAM is envisaged?
Assuming that surface normal and reflectivity of laser data
could be accurately estimated, there are examples in the
literature of using this information with classifiers for both
engineering and geological applications. Wurm et al. [7] were
able to discern vegetation from streets based on LiDAR
intensity, range and incidence angle information. Tatoglu
and Pochiraju used intensity measurements to classify the
reflective properties of scanned surfaces [8] by testing how
well the intensity matched various reflective models such as
Lambertian or Phong models.

Burton et al. [9] showed in geological outcrop studies
that intensity has a log-linear correlation to shale and sand
percentage . This relationship was used to estimate important
properties of un-weathered outcrops. Another potential use of
reflectivity data is performing science operations on a plan-
etary rover. The Mars Science Laboratory (MSL) has been
able to detect hydrated minerals at a distance by analyzing
the intensity of infrared and visual spectrum images taken
by its mast camera [10]. These same techniques could be
applied to LiDAR reflectivity maps.

Does adding these measurements improve the observ-
ability, accuracy, and/or speed of SLAM? This question
is of core interest to the European Space Agency (ESA),
where improved localization with active sensors is desired
in anticipation of varying lighting conditions that future
rover missions will encounter in shadowed regions of the



Moon or Mars missions that conduct traverses over the
course of an entire day. In this paper, we show that by
introducing intensity measurements the problem requires less
landmarks than a typical bundle adjustment problem and in
a simulated environment improves upon the accuracy and
speed of computing a solution.

II. INTENSITY MEASUREMENTS

LiDAR and ToF cameras emit light (from a laser or
LEDs) and measure the returning light that is reflected from
surrounding objects to determine the range between the target
and the sensor. In scanning LiDAR the azimuth and elevation
of the lighting source is also estimated by a combination
of calibration, encoders, and/or an IMU. In ToF cameras,
azimuth and elevation are replaced by pixel values. The
sensor also measures the power or amplitude of the returning
light, and compares this with the power or amplitude at
which it was emitted. The ratio between the two is often
called intensity by active sensor manufacturers and is usually
reported alongside range measurements.

The physical principles that determine the power of the
returning signal are the same as microwave radar [5]. The
radar range equation comprises the three main factors: (a)
the sensor, (b) the target, and (c) atmospheric parameters. An
assumption here is the target surface is roughly Lambertian,
which means that light is scattered evenly in all directions
when reflected. For the emitted signal with power Pe,

Pr =
PeD

2
rρ

4R2
ηsysηatm cosα, (1)

where Pr is the returning power of the signal, Dr is the
receiver aperture diameter, ρ is the target reflectivity, R
is the range to the target, ηsys is the system transmission
factor, ηatm is the atmospheric transmission factor and α
is the incident angle. The intensity measurement is linearly
proportional to Pr by some constant parameters of the
LiDAR sensor, ηLiDAR, that can be grouped with other
constant parameters ηsys, ηatm, Dr, and Pe to form ηall;

I = ηLiDARPr (2)

= ηLiDAR
PeD

2
rρ

4R2
ηsysηatm cosα (3)

=
ρ

R2
ηall cosα. (4)

Looking at (1), we can see that Pr is a function of the range,
which itself is a function of the target position and the sensor
pose, the incidence angle which is determined by the sensor
orientation and the surface normal, and on ρ (the target’s
reflectivity), which depends on the material of the target.

III. PROBLEM FORMULATION

A. Notation and Conventions

The approach described in this paper requires the use
of quaternions [11], surface normal vectors, matrices, and
scalars. This section describes their notation, required oper-
ations, as well as other relevant properties of these quantities.

Fig. 1: Coordinate frames for 3D localization of sensor and
landmarks in the global frame

1) Coordinate Frames: Two coordinate frames are defined
to express the position and orientation of the vehicle and
landmarks. Coordinate frame {A} is the global frame and
coordinate frame {B} is attached to the sensor. It is assumed
here that {B} represents both the LiDAR and vehicle co-
ordinate frames. A unit quaternion q = (qv, qs) ∈ S3, is
used to represent the rotation between these frames where
subscripts v and s denote the vector and scalar parts of
the quaternion, respectively. Positions are described by a 3-
vector p = (px, py, pz) ∈ R3. The transformation between
frames is depicted in Fig. 1.

2) Quaternion Notation: Unit quaternions exist on a unit
3-sphere in R4, which is denoted S3. Hence, they must satisfy
the constraint qTq = 1. Quaternions are described by a
scalar value qs and a vector qv; i.e.,

q =

[
qv
qs

]
=
[
qx qy qz qs

]>
. (5)

Quaternion multiplication is performed according to

qc = qa ⊗ qb =

[
qasqbv + qbsqav + qav × qbv

qasqbs − qav · qbv

]
, (6)

which is non-commutative due to the cross product term. The
rotation from {A} to {B} is denoted BAq and a vector Ap
in {A} can be rotated to {B} by

qBp = B
Aq⊗ qAp ⊗ BAq−1, (7)

where qp = [p>, 0]> and, because the inverse of a unit
quaternion is equal to its conjugate, q−1 = [−q>v , qs]

>.
3) Normal Vectors and Landmarks: Given a 3D surface

and a point on that surface, a surface normal vector is simply
the vector that is perpendicular to the tangent plane to the
surface at that point. The light that is reflected from a surface
is dependent on the angle between the light source direction
and this surface normal.

Normal vectors live on a unit 2-sphere embedded in R3,
denoted S2. Surface normals are not unique; for a surface that
exists in R3, at any given point on that surface there is an
inward and outward pointing surface normal. However, in the
case of active sensor measurements it can be assumed that the
surface normal points towards the sensor. Surface normals,
described by the 3-vector n = (nx, ny, nz) ∈ S2 with ||n|| =



Fig. 2: Camera reference frame {C} and a pinhole camera
image plane

1, are used in addition to reflectivity, ρ, and position p, to
parameterize, in this paper, what we refer to as landmarks
` =

(
p`x , p`y , p`z , nx, ny, nz, ρ

)
∈ R3 × S2 × [0, 1].

B. Intensity-Augmented SLAM

The technique presented here is a form of SLAM that
estimates m sensor poses, s = ((pr,1,q1), ..., (pr,m,qm))
that are each associated with a set of sensor observations
of the same set of static landmarks ` = (`1, ..., `n), which
include intensity-based information, all in global frame {A}.
For the purposes of this paper, no other knowledge or obser-
vations (such as the motion between measurements) is used
and landmark recognition—also called data association—for
each set of measurements is assumed to be known.

The goal of this SLAM algorithm is, thus, to estimate the
state vector that describes the sensor pose and each landmark
state in the global frame {A}, given all observations. The to-
tal state vector for the problem that includes all sensor poses
and landmark positions is x = (s1, . . . , sm, `1, . . . , `n). Let
a subset of the state vector, xi,j , represent the i-th sensor
pose and jth feature parameters xi,j = (si, `j).

C. Measurement Models

Scanning LiDAR measurements are usually obtained by
using a photodiode to directly measure the time of flight
of a laser pulse and its amplitude. Depending on how the
laser and photodiode are mounted on the sensor their angle
of elevation is usually constant and their angle of azimuth
is measured with an encoder. With the measured time of
flight, the distance the light travelled can be computed and
the sensor typically reports the return as range r, azimuth β
and elevation α. ToF cameras work on a different principle,
in which a series of LEDs bathe the scene in light modulated
at a known frequency, and the onboard CCD pixel array
absorbs the reflected light and measures the phase difference.
Due to the known wavelength of the modulated signal, the
range can be computed from this phase difference. The ToF
camera data are typically reported as range r and pixel
locations described by pu and pv as shown in Fig. 2. As
long as the image has been corrected for any spherical or
tangential distortions, the pixel locations in a 2D image are

equivalent to the elevation and bearing angles in scanning
LiDAR measurements. For brevity’s sake, only the model
for a scanning LiDAR measurement is included here.

An observation of the j-th landmark at the i-th LiDAR
scanner pose can be modelled as

hs(xi,j) =

ri,jβi,j
αi,j

 =


√
B∆2

xi,j
+ B∆2

yi,j + B∆2
zi,j

atan( B∆yi,j ,
B∆xi,j

)

atan
(
B∆zi,j ,

√
B∆2

xi,j
+ B∆2

yi,j

)


(8)
where

A∆i,j =

A∆xi,j
A∆yi,j
A∆zi,j

 =

p`x,j − prx,ip`y,j − pry,i
p`z,j − prz,i

 , (9)

and [ B∆i,j

0

]
= B
Aqj ⊗

[A∆i,j

0

]
⊗ BAq−1j , (10)

where BAqj = q−1j .
This paper seeks to incorporate additional measurements

in the SLAM algorithm; intensity I and a measurement, n̆,
of the surface normal. Information about the orientation of
these surfaces is lost in the sampling process, however the
information still exists in the relationship between a sampled
point and points in its neighbourhood [12]. The literature
provides two predominant methods for estimating the sur-
face normal of a point and its uncertainty; one based on
optimization methods, and one based on averaging methods
[12]. While optimization methods generally provide better
results, averaging methods are less computationally complex.
In both cases, the surface normal is measured in the sensor
frame and therefore the measurement model is a function of
the sensor orientation and the surface normal estimates.

In this paper, our measurement model assumes Lambertian
reflectance at the surface. More general reflectance functions
exist that can be used to model other types of reflection (e.g.,
specular) but these are not addressed in the analysis done
here. We model the j-th additional measurements taken at
the i-th sensor pose asIi,jn̆i,j

0

 =

ηallρj
r2i,j

(
nj · −

A∆i,j

‖A∆i,j‖

)
B
Aqi ⊗

[
nj
0

]
⊗ BAq−1i

 ∈ [0,∞)× S2. (11)

Thus, the measurement model that augments these additional
measurements to the scanning LiDAR model is hsa(xi,j) =
(ri,j , βi,j , αi,j , Ii,j , n̆i,j).

IV. OBSERVABILITY ANALYSIS

This section provides an observability analysis of a three
dimensional SLAM problem with a scanning LiDAR land-
mark sensor that measures range, bearing, elevation, inten-
sity, and includes a surface normal estimate, taken at different
sensor poses. First, the system’s observability when incorpo-
rating only range, bearing, and elevation measurements is
analyzed, with intensity and surface normal measurements
added to investigate how this affects observability.



A sufficient condition of local weak observability [13]
is that the observability rank condition is satisfied. Local
observability is a stronger condition than global observabil-
ity [14]. The system is locally weakly observable if it is
“possible to instantaneously distinguish (the states) from
their neighbors (in the local state space) for all possible
states”. Our SLAM problem satisfies this condition if any
of the observability matrices are of rank 6m + 3n for
traditional SLAM, and rank 6m + 6n with SLAM that
includes reflectivity and surface normal estimates (Section
III-B). The traditional SLAM problem analysis includes
only the position of landmarks and is estimated with the
measurements in (8). A similar analysis, using the augmented
state, is conducted and the observability of both is compared.
The approach used here has been extended from [14], which
is about 2D SLAM and from [15] which extends these
concepts to 3D SLAM.

For a nonlinear function, such as h(x), the observability
matrix is formed such that the elements in this matrix are any
combination of the repeated Lie derivatives of the compo-
nents of the measurement model h(x), and the process model
f(x,u) that describes how the system states change with
time given an input u. An observability matrix is composed
by using any combination of successive Lie derivatives of
any of the components of the measurement model. The Lie
derivatives are defined recursively as

L0
fdh(x) =

∂h(x)

∂x
, (12)

Ldfdh(x) = Ld−1f dh(x)
∂f(x,u)

∂x
(13)

+

[
∂

∂x

(
Ld−1f dh(x)

)T
f(x,u)

]T
.

Because the system described here treats each state as static,
f = 0(6m+3n)×1, only the first Lie derivative (i.e., the
Jacobian of the measurement model) is relevant. However
for a system that incorporates measurements of motion (e.g.,
an IMU), further Lie derivatives would be computed. For
traditional SLAM, the observability matrix is simply any
combination of 6m + 3n rows that are taken from any
of the successive Lie derivatives. If any of these possible
observability matrices can be shown to be full rank, then the
system is locally weakly observable.

For example, a system with only one landmark (n = 1)
and one sensor pose (m = 1) has a state vector with
9 parameters and 3 observations. A potential observability
matrix for this system is

O =



L0
F dh1(x)

L0
F dh2(x)

L0
F dh3(x)

...
L2
F dh1(x)

L2
F dh2(x)

L2
F dh3(x)

L3
F dh1(x)


, (14)

where hk refers to the k-th row of the measurement vector.
However, because only the first Lie derivative is non-trivial,
we can see right away that this system is unobservable and
has at most a rank equal to 3. To determine the minimum
number of estimated sensor poses and landmarks needed to
construct an observability matrix we can set up the inequality

6m+ 3n ≤ 3mn, (15)

which shows that this always requires at least two sensor
poses. For two sensor poses, we require at least four land-
marks to satisfy inequality (15) and for any number of poses
greater than two we require at least three landmarks. With
two sensor poses and four landmarks, only one observability
matrix exists that includes all possible Lie derivatives

O = (O1,1,O1,2, ...,O2,4) , (16)

where

Oi,j =

L0
F dh1(xi,j)

L0
F dh2(xi,j)

L0
F dh3(xi,j)

 , i = 1, . . . 2 and j = 1, . . . , 4.

(17)

We determined the rank of O by using MATLAB’s
Symbolic Toolbox, which implements Gaussian elimination.
In the case of two robot poses (m = 2) and four landmarks
(n = 4), O must have a rank of 6m + 3n = 24. However,
carrying out the analysis it can be shown that rank(O) = 18
which is a rank deficiency of six. This is a well known
problem in the SLAM community [14], and it can be shown
that no matter how many landmarks or sensor poses there
are, O is always rank deficient. This is due to the inability
to observe the global frame, {A}. To alleviate this, the initial
sensor pose can be fixed at the origin of {A}. This reduces
the minimum rank requirement to 6(m−1)+3n and carrying
out the same operations reveals that the problem is indeed
locally weakly observable.

Using the augmented measurement model that includes
intensity and nearest neighbor surface normal measurements,
there are now additional landmark states to estimate that have
three degrees of freedom (n ∈ S2 and ρ ∈ [0, 1]). Here
we devise three types of “augmented” SLAM that all still
make use of the standard LiDAR measurements but also use
augmented measurements: (1) one that uses only the first
augmented measurement I and estimates each landmark’s
associated n and ρ; (2) one that only uses the second
augmented measurement, n̆, and just estimates n; and (3) one
that uses both augmented measurements and estimates n and
ρ. The Lie derivatives are computed as before to construct
the observability matrix. We can determine the minimum
number of estimated sensor poses and landmarks needed to
construct an observability matrix by the inequality

6m+ 6n ≤ 6nm. (18)

Thus, at minimum the problem requires two sensor poses
and two landmarks. Immediately we see a difference from
traditional SLAM, with only half the landmarks needed to
construct the observability matrix. The rank deficiency for



TABLE I
Minimum landmarks and views to construct O, brackets

indicate value when first frame is fixed

Measurements Dim. of `
n for 2
views

n for 3
views

h = (r, β, α) 3n 4(2) 3(2)
h = (r, β, α, I) 6n 6(3) 3(2)
h = (r, β, α, n̆) 5n 3(2) 2(2)
h = (r, β, α, I, n̆) 6n 2(1) 2(1)

TABLE II
Rank deficiency with minimum number of landmarks,

brackets indicate value when first frame is fixed

Measurements 2 views 3 views

h = (r, β, α) 6(0) 6(0)
h = (r, β, α, I) 12(6) 6(0)
h = (r, β, α, n̆) 3(0) 3(0)
h = (r, β, α, I, n̆) 3(0) 3(0)

this problem can be shown to be three, a reduction from six
in traditional SLAM with four landmarks. If the initial robot
pose is fixed to the origin of {A}, the problem becomes
fully observable. This has some encouraging properties over
traditional SLAM. We are now estimating the shape and
infrared reflectivity of the landmarks in our map, useful
properties for scientific analysis and landmark recognition.
Additionally, the problem is observable with fewer land-
marks, which means it may perform better when the number
of visible landmarks is reduced, which is typical for low
resolution sensors like scanning LiDAR and ToF cameras.

The conditions needed to construct an observability matrix
with two or three separate view points for the sensor are
shown in Table I for all types of SLAM discussed previously.
The rank deficiency of the problem is shown for the same
set of circumstances in Table II.

Interestingly, the minimum number of landmarks needed
for the different types of measurement vectors is the last
case, which includes all measurements. By fixing the first
frame, an observability matrix with just one landmark can
be constructed.

As shown in Table II, the SLAM problem becomes full
rank when fixing the first frame in all cases, except when
only augmenting the measurement vector with intensity from
two viewpoints. In summary, by estimating properties of
the surface normals and reflectivity, SLAM is observable
under less strict requirements and we gain additional useful
information about the surface normal and infrared reflectivity
of each landmark compared to traditional SLAM.

V. SIMULATION

Sparse bundle adjustment (SBA) as described by Lourakis
and Argyros [16] was implemented using MATLAB to verify
that the proposed method of SLAM using augmented inten-
sity and nearest neighbor surface normal measurements was
valid. The simulation was tested with known data association
and for each sensor pose all landmarks were visible and

Fig. 3: Simulation with five 6D robot poses and 20 land-
marks; orientation and surface normal direction are indicated

TABLE III
Standard deviation (STD) of simulated sensor

measurements

Measurement Type STD (σ)

Range, (σr) 0.01 m
Bearing, (σβ) 0.5◦

Elevation, (σα) 0.5◦

Intensity, (σI) 164
Unit surface normal component, (σn) 0.03

measured. The first sensor pose estimate was fixed to the
origin of {A}. The true pose of the first sensor was also set
to the origin of {A} for ease of plotting.

The rest of the true sensor poses and landmark values were
randomly perturbed such that the camera poses were near to
the origin and pointing along the global x-axis, while the
landmarks were pointing in the opposite direction (again,
perturbed) and were randomly distributed along a plane
approximately 7 m away. For the tests presented here, five
sensor poses and 20 landmarks were estimated. An example
of a random set of true values is shown in Fig. 3.

To compare using augmented measurements to traditional
SLAM the algorithm was run with and without intensity and
surface normal measurements. The measurement standard
deviation (STD) is shown in Table III, all modelled as
∼ N (0, σ2). The intensity noise properties are not available
from the manufacturers, so a value of 1% of the maximum
possible value was chosen as a reasonable amount based on
the STD observed over hundreds of measurements of a static
scene by active sensors like the MESA Imaging SR4000
ToF camera and the Velodyne HDL-32E LiDAR. The surface
normal noise was added to each simulated measurement and
then the surface normal vector was normalised to maintain
it as a unit vector. The intrinsic sensor parameter, ηall, was
treated as a known constant, however this must be determined
experimentally. Alternatively, ηall could be estimated on-
line as an additional parameter to account for changes in
atmosphere and temperature with time.



TABLE IV
Simulation Results for 100 runs

State Initial RMSE Traditional SLAM RMSE Augmented SLAM RMSE

pr (1.0 , 1.0 , 1.0 ) m (0.093, 0.088, 0.11) m (0.034, 0.024, 0.021) m
q (5.0, 5.0, 5.0)◦ (0.13, 0.11, 0.11)◦ (0.16, 0.11, 0.13)◦

p` (2.0, 2.0, 2.0) m (0.10, 0.091, 0.11) m (0.034, 0.041, 0.038) m
n (0.20, 0.20, 0.20) m n/a (0.021, 0.020, 0.019) m
ρ 0.20 n/a 0.037

The estimates of sensor pose and landmark parameters
were initialized with a root mean squared error (RMSE) that
is shown in Table IV. After running the SBA algorithm the
results show that it is possible to estimate all parameters in
the problem using the augmented measurements. Note that q
values have been converted to an Euler angle representation.
Over 100 simulations, the RMSE of the robot pose estimates
and landmark position estimates were smaller when using
the augmented measurements. The additional landmark pa-
rameters were also estimated within an acceptable amount
of error. The full results of these tests are shown in Table
IV. In addition to these results, the mean run time of the
augmented SLAM algorithm on an i7 desktop computer was
found to be approximately 8% faster than the traditional
SLAM algorithm due to less iterations until convergence.

VI. DISCUSSION AND CONCLUSION

The work presented in this paper shows that, under certain
assumptions, the addition of intensity measurements from
LiDAR and ToF cameras has promise for improving the per-
formance of SLAM applications that use these sensors. By
including intensity-based information, the SLAM problem
can be solved with fewer landmarks. Alternatively, with the
same number of landmarks the solution is more accurate.

However, there remain several practical considerations to
address. This work currently relies on repeatedly-measured
landmarks that reflect infrared light diffusely. In real-world
environments, objects often include specular reflections that
are directional. One could use outlier detection, such as
RANSAC [17], to detect non-Lambertian reflecting land-
marks that do not agree with the model and not use them.
In fact, because only one landmark is needed to solve for
the transformation between two robot poses, outlier detection
can be computed much faster than with only range measure-
ments. Along these lines specular components of reflection
can be removed before the returning light is measured by
using polarization filters [18]. Another solution is to use more
advanced models that include specular reflections. These
options are being investigated by the authors to bring this
technique from simulation and into the field.
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